Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relays pass baton to next-gen broadband networks

30.07.2008
The ideal of affordable wireless broadband for all, and as an added bonus better quality services in urban areas, is a lot closer thanks to recent advances made by European researchers.

The next generation of broadband wireless networks is set to be simpler, cheaper for both operators and consumers, and more efficient than current technology permits. This is due to the innovative use of relay stations to boost the signals from base stations.

The FIREWORKS project will deliver fourth-generation (4G) broadband wireless access (BWA) systems to remote communities despite difficult terrain and low population densities.

In cities, where large buildings and thick walls can block or interfere with wireless signals, relays are a cost-effective and easy to deploy way of boosting reception to the end-user.

You the MAN!

The EU-funded project concentrated on OFDMA (Orthogonal Frequency Division Multiplexing Access) based networks and specifically those designed for BWA, particularly wimax and wifi. OFDMA networks have different characteristics and deliver signals in a different way to traditional fixed-line and cellular networks. OFDMA is already in widespread use and the technology will continue to be used for next-generation networks.

WiFi local area networks (LANs) are familiar to most people, with ‘hotspots’ where anybody can connect to the internet via laptop to be found in airports, cafes, hotels and other public areas all over Europe and internationally. The next evolution of WiFi is Mesh WiFi, where the individual hotspots are seamlessly linked together to form larger networks. WiMAX is designed to provide much wider coverage, which in a city would be a metropolitan area network (MAN).

“Relay stations are much smaller than base stations and are much easier to deploy – they can be fixed onto lamp posts for example,” says FIREWORKS technical manager Dr Antonis Valkanas. “They also should only cost around one-fifth of the price, as the intelligence is in the base station and, unlike base stations, they do not require a directed backhaul connection to the internet.”

FIREWORKS’ systems will also be able to provide, for the first time, seamless operation between WiMAX and WiFi networks, so somebody on the move with a mobile device or laptop will not notice the switch from one to the other.

Exploiting the overlap

One of the main challenges facing the researchers was the problem of how to maximise the gain from overlapping transmissions. The information can be accessed from either the relay or the base station at any one time, or by simultaneous transmissions by both of them.

The project was able to deliver new algorithms – small software packages – which ensure that, whatever transmission protocol is used, the best combination and clearest reception is assured.

With this problem solved, it is possible to extend the range of networks into previously inaccessible areas, whether due to high cost or rough terrain. It also is now possible to boost reception in urban blackspots by positioning relays where base stations are not feasible.

While the main benefits of FIREWORKS are not likely to be felt until the next generation of BWA networks start rolling out in Europe, from 2010, a prototype system has been developed to prove the viability of the relaying concept.

ROCKET, son of FIREWORKS

In fact, so successful was FIREWORKS that the EU has agreed to fund a follow-up project with the same core consortium.

Project ROCKET kicked off in January 2008, and will be both taking the techniques used in its predecessor forward and looking into other areas only previously touched on, such as the most efficient use and allocation of spectrum for BWA services.

The systems developed in ROCKET will conform with the latest BWA standards, including 802.16m, which are now going through the IEEE (the international engineering standards body) approval process, and so will have a shelf-life of many years.

From hop to hop-hop

The main focus of the project, though, will be to expand the scope of relay coverage from the single hop of FIREWORKS – one base station to one relay station – to a multi-hop configuration with one or more base stations sending signals onto to relay stations which can then retransmit to other relay stations. This will require a lot more work on the base-band and protocol layer to ensure what could be several different signals being combined into the best possible signal for the end-user.

While the work being done is highly technical, the end result will simply mean high-quality, low-cost wireless broadband access virtually anywhere in Europe, and eventually the whole world.

FIREWORKS was funded by the EU’s Sixth Framework Programme (FP6) for research. ROCKET is being funded by FP7.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>