Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s next-generation broadband

28.07.2008
An enormous research effort by Europe’s leading broadband players has helped accelerate dramatically the rollout of next-generation broadband services reaching speeds in the 10s of Mbit/s in many European countries. That is just the start.

The deployment of broadband services in the 10s of megabits per second (Mbit/s) is accelerating across the continent, thanks to the research efforts of Europe’s main broadband players. Even 100Mbit/s has become economically feasible and deployments have started.

Two years ago Europe’s leading telecoms, ISP companies, and its top technology vendors and research institutes finished their work on the first phase of the MUSE project. That effort led to a new set of standard specifications for broadband technology branded as the Global System for Broadband (GSB).

“The MUSE project did not start the push for next-generation broadband technologies and services,” notes MUSE project coordinator, Peter Vetter. “Many companies and institutes were working on it already. But MUSE certainly helped to establish a consensus on what it should look like and what it consisted of, and that accelerated the deployment of a new architecture and better access technologies.”

Risk-free roadmap?

By helping to establish standards, and by defining a roadmap that gained industry consensus, the project limited the risks faced by the main stakeholders, and boosted stakeholder confidence. Increased broadband investment is the result.

Already in Belgium, the Netherlands, the UK, Germany and other countries, providers are deploying services with vDSL (Very High Speed Digital Subscriber Line), an access technology that offers up to 100Mbit/s.

“Our project responded to some of the obstacles facing Broadband4All, a major strategic thrust of European policy under the Sixth Framework Programme. There are many elements needed to make Broadband4All a reality, so it took a large integrated approach to tackle all the technical issues,” Vetter reveals.

EU-funded MUSE, which stands for Multi-Service Access Everywhere, tackled those issues. It was a huge project. It had €60 million, half of which was funded by the European Commission, and a research agenda that looked into every aspect of broadband access technology.

Broadband access architectures, access and edge nodes, dsl, fibre optic, fixed wireless, back-end integration, interconnection between public networks and home networks, and generic test suites, are just a few of the issues that the MUSE team looked at.

“There is often misunderstanding; people think we were just looking at improving the access bit-rate, but that aspect of the project accounted for only 20% of our budget. The main challenge was to enable multi-service delivery through an integrated end-to-end approach,” Vetter explains.

Complementary phases

The MUSE project was organised into two, complementary phases of two years each. Phase one focused on the technical architecture for next-generation broadband networks. This architecture was dubbed the Global System for Broadband (GSB) and it is this work that is responsible for the accelerated broadband deployments.

The second phase of the project (developed further in a follow-up story on 28 July: ‘Next-gen broadband at your service’) looked at upgrading this architecture with network intelligence to facilitate the support of fixed-mobile convergence, multimedia and IPTV, or television transmitted via the internet, among others.

While the second phase offered enhanced services and integration, the first phase tackled the fundamental network issues. It was a big job.

“There was an obvious technology already available to improve metro and access networks,” points out Vetter. “It was Ethernet, which was designed for IP networks and promised low cost because it was already widely used in data networks.”

Serious problems

But serious problems existed with the technology. Ethernet was designed for local area networks with trusted users and lacked security when used in a public network. Also the support of Quality of Service (QoS), which is essential to handling multiple services, like voice and video, as well as the internet, a combination of services often referred to as ‘Triple Play’.

“There were some fragments and different approaches out there, responding to some of these problems,” says Vetter. “But the real issue was to develop consensus around a complete solution.”

Thanks to good pre-standardisation studies and consensus building, MUSE made many contributions to the standards at the DSL forum, ETSI-TISPAN, Home Gateway Initiative, and ITU-T, the relevant official standards bodies.

This led to a set of specifications and standards for Ethernet-based metro, access, and home networks with enhanced quality of service, security and bandwidth. Altogether, the architecture is the GSB.

Though the most visible result of this work is the upgrades of DSL networks for Triple Play and their increased deployments, the generic architecture and platform technology apply to all of the main and emerging access technologies, like fixed wireless and optical fibre.

Just the beginning

“Eventually all networks, including cable networks, will evolve to optical fibre, that will be the standard physical technology. And it is already happening: fibre is deployed in France, Sweden and other countries. But in the meantime, the most widespread technologies, DSL and fixed wireless, can move to GSB.”

And this is just the beginning. The fundamental architecture is in place with MUSE phase I finished in February 2006. Now phase II has started with the intention of developing the enhanced services enabled by the GSB architecture.

But two years after completion of the first phase, its results are already responsible for faster, better broadband near you, sooner than anyone expected.

This article is part one of a two-part feature on MUSE.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Interactive software tool makes complex mold design simple
16.08.2018 | Institute of Science and Technology Austria

nachricht Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project
16.08.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>