Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project to Advance Radar, Communications Systems

24.06.2008
The Defense Advanced Research Projects Agency (DARPA) is providing $1.4 million to a Phase III research project led by the U.S. Department of Energy (DOE) Argonne National Laboratory to develop high-performance integrated diamond microelectro-mechanical system (MEMS) and complementary metal-oxide-semiconductors devices (CMOS) for radar and mobile communications using an Argonne developed and patented Ultrananocrystalline Diamond (UNCDTM) film technology.

Argonne's program partners are Advanced Diamond Technologies, Inc. (ADT), Innovative Micro Technology (IMT), MEMtronics Corp., Peregrine Semiconductor the University of Pennsylvania and Leigh University.

The project's principal investigator and project manager is Derrick Mancini, associate division director for facilities and technology at the Center for Nanoscale Materials (CNM) at Argonne. The project's technical leader is Orlando Auciello, a senior scientist in Argonne's Materials Science Division and the CNM.

DARPA, a U.S. Department of Defense organization that supports high-risk, transformational research, is interested in the development of advanced phased-array radar and communication systems for military and commercial applications. The integration of capacitive radio frequency (RF) MEMS and CMOS devices will enable rapid electronic steering of radar beams to substantially improve radar speed and precision. Monolithic RF MEMS/CMOS device integration will also greatly improve the multifunction performance of state-of-the-art wireless devices.

RF MEMS devices like resonators (tiny diving board-like structures at very high frequencies) and switches (tiny membranes that establish or disconnect electrical pathways) may substantially improve the functionality and performance of RF and microwave systems.

"The UNCD film technology has the potential to improve the reliability of MEMS switches because of unique combination of properties such as resistance to adhesion between two surfaces in physical contact that can lead to premature switch failure, and because of demonstrated tunability of dielectric properties and leakage current" Auciello said. "In addition, UNCD films exhibit the highest Young's modulus – the measure of a material's stiffness under stress – of any material being investigate for MEMS resonators, and is currently the only technology that can produce diamond films at temperatures less than or equal to 400 degrees Celsius. Both characteristics provide critical parameters for producing resonators for very high frequency operations and the integration of diamond MEMS with advanced microelectronics, respectively."

In the DARPA Phase II program, the Argonne-led team achieved several key goals:

• materials integration and processes to fabricate UNCD-based resonators;

• integration of UNCD films with CMOS devices;

• demonstration of UNCD dielectric properties suitable for application as low-charge/low-force of adhesion dielectric layer for RF capacitive MEMS switches;

• and demonstration of UNDC-dielectric-based RF MEMS switches that surpassed one-billion switching cycles with low (approximately 0.17-decibel) insertion losses at about 10 gigahertz.

Argonne is the world leader in the fundamental and applied science of UNCD film technology and works jointly with academia and industry to develop new UNCD-based MEMS and other hybrid technologies, including the integration of oxide piezoelectric and UNCD films that produced the lowest power piezoelectrically-actuated UNCD resonators and nanoswitches demonstrated today. The CNM currently has the world's only microwave plasma chemical vapor deposition system for growing UNCD films at less or equal to 400 degrees Celsius on up to 200-millimeter wafers, located in a clean room environment for nanoelectro-mechanical systems fabrication. The CNM provides the main expertise and infrastructure at Argonne critical for the success of the DARPA Phase III program. UNCD is prized for its exceptionally small grain size of 5 nanometers, which is thousands of times smaller than grains in traditional microcrystalline diamond films.

Argonne's five research partners each bring specific interdisciplinary expertise and capabilities that are critical to the success of the DARPA Phase III program.

• Advanced Diamond Technologies, a Romeoville, Ill.-based Argonne spin off company that commercializes UNCD, is the world leader in the development and application of diamond films for industrial, electronic and medical applications. ADT provides diamond film and materials integration solutions to a variety of industry participants in diverse application areas. ADT has developed a low-temperature process for producing UNCD films, and a number of wafer-scale products suitable for integration of UNCD with other materials for MEMS applications, including diamond-on-silicon and diamond-on-insulator wafers up to 200 millimeters in size with unprecedented property uniformity.

• Innovative Micro Technology manufactures MEMS devices and its overriding goal is to partner with companies to develop products based on MEMS technology. IMT has the largest and best-equipped MEMS foundry facility in the world providing full services from MEMS design to high-volume manufacturing of MEMS devices, including drug delivery, biomedical implants, microfluidics, inertial navigation, sensors, telephone/digital subscriber line switching, and RF devices (critical to the DARPA Phase III), among many other devices. IMT will fabricate the RE MEMS switches for the DARPA Phase III program.

• MEMtronics, of Plano, Texas is a privately-held company focused on the development and maturation of RF MEMS switching technology. This technology is being incorporated into phase shifter and tunable filter products targeted at a variety of military and commercial wireless and radar applications. MEMtronics has designed and demonstrated some of the most advanced RF MEMS switches to date— a critical component

• Peregrine Semiconductor is a global leader of high-performance RF CMOS devices. Peregrine’s patented UltraCMOS™ process technology — enabled by silicon on sapphire substrates — drives unprecedented levels of monolithic integration throughout a broad portfolio of mixed-signal RF ICs. The UltraCMOS process technology will drive the UNCD-based RF MEMS switches designed by MEMtronics and fabricated by IMT, in the Phase III program.

• University of Pennsylvania Professor Robert W. Carpick leads a group that is conducting world-class research on tribology and mechanical properties of materials using novel atomic force microscopy and surface science tools. The university group will provide unique expertise and tools to characterize the tribological and mechanical performance of UNCD-based MEMS.

Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Angela Hardin | newswise
Further information:
http://www.anl.gov

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>