Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole proves to be mightier than the parts

12.06.2008
European researchers have developed solutions to help weld a mishmash of different technologies, protocols and system architectures, making it easier to run research and education networks.

Nearly all countries have research and education networks, which are separate from commercial telecommunications networks. But most are based on a mishmash of different technologies, network protocols and architecture, a situation that makes end-to-end connectivity for high-bandwidth connections very difficult.

It was the National Research and Education Network (NREN) in the United States that eventually evolved into the Internet. Every country in Europe, and in most of the rest of the world, also has its own NREN-type network linking together universities, research institutions and computing centres. The EU has also established a backbone network to link the various research networks to each other.

So far, so good. The setup all sounds simple and logical. But there is a fly in the ointment in the shape of interconnectivity. Or rather the difficulties lie in connecting the different networks to each other, and particularly to commercial networks, from which the research ones are completely separated in most cases.

For a start there are three different levels, or layers of networks to deal with. At the bottom are the individual campuses with the different departments and buildings linked by a university-wide network.

Each university-wide network is joined to the national network of the country where the institution is located. The national networks then link up to the top-level European-wide network.

Bringing together the networks

Researchers with the EU-funded MUPBED project, spent about three years until the end of 2007, researching and testing ways in which the disparate components of different networks could be seamlessly linked together for high-quality and quick communications with very high bandwidth requirements.

Project coordinator Dr Jan Spaeth says a unique aspect of the project was that for the first time it brought together research network operators with standard telecom network operators.

“Until MUPBED, the two communities had been quite separate, with the incumbents and big telcos on one side of the fence and the research network on the other,” he says. “But there had been a big potential to improve mutual exchange and collaboration, starting by finding a common technical language.”

And although the project was geared up to meet the requirements of the research networks, its findings have proven to be of equal importance to the commercial networks. The researchers expect the commercial networks will build on the work done by the project to launch a new range of advanced services.

“What we see in research networks we also see in commercial networks but on a much bigger scale,” says Spaeth. “Research networks are often a bit ahead of commercial networks in terms of both requirements and evolution, and this proved to be the case here.”

The starting point for the project was to find a simple and fast way for people at different universities in different countries to share information.

“Somebody at a university somewhere in Europe may have to go through several different technologies and network domains before connecting to a colleague at another European university, and the quality of connection will not allow them to exchange the information they need to when they need to,” Spaeth says.

Cutting out the middleman

The solution to this was to find a way to cut down vertically through the layers using an automated control plane. When a user makes a request for a connection of a particular bandwidth for a specific purpose, an automatic connection is set up between the networks. The networks then communicate with each other and provide the correct solution before informing the parties at both ends, and the operators involved in between, what has happened over the links.

“We developed a network solution which allows multi-domain networking, and working with standards bodies tested it against emerging standards,” says Spaeth. “We were able to influence the standards bodies, who had not previously been aware of the research networks’ requirements and had no input from that source.”

The MUPBED research partners then set up a series of connected test beds across the European networks, deploying new equipment, such as optical connections, Ethernet switches and routers. They were able to prove their solutions were technically feasible using current state-of-the-art technology.

At the heart of the solution is the optimisation of network resources by only using capacity when it is required for a specific task, and then releasing it again.

The researchers tested the system by holding high-quality multiple-person videoconferencing of a far better standard than what is commercially available today, by transferring bulk data from one point on the network to another, and by sending uncompressed video for medical purposes.

In each case the applications set up the required links with all the bandwidth that was required, and then released the capacity back to the network when the task was completed.

These solutions are not yet fully commercially available. It is now up to the research networks, and later the commercial operators, to decide if and when to invest in the infrastructure to make it and other as yet unsought scenarios a reality.

What MUPBED has done is to demonstrate the technology is real and ready to use right now.

MUPBED received funding from the EU's Sixth Framework Programme for research.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89789

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>