Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Way to Protect Computer Networks from Internet Worms

06.06.2008
Scientists may have found a new way to combat the most dangerous form of computer virus.

The method automatically detects within minutes when an Internet worm has infected a computer network. Network administrators can then isolate infected machines and hold them in quarantine for repairs.

Ness Shroff, Ohio Eminent Scholar in Networking and Communications at Ohio State University, and his colleagues describe their strategy in the current issue of IEEE Transactions on Dependable and Secure Computing. They discovered how to contain the most virulent kind of worm: the kind that scans the Internet randomly, looking for vulnerable hosts to infect.

"These worms spread very quickly," Shroff said. "They flood the Net with junk traffic, and at their most benign, they overload computer networks and shut them down."

Code Red was a random scanning worm, and it caused $2.6 billion in lost productivity to businesses worldwide in 2001. Even worse, Shroff said, the worm blocked network traffic to important physical facilities such as subway stations and 911 call centers.

"Code Red infected more than 350,000 machines in less than 14 hours. We wanted to find a way to catch infections in their earliest stages, before they get that far," Shroff said.

The key, they found, is for software to monitor the number of scans that machines on a network send out. When a machine starts sending out too many scans -- a sign that it has been infected -- administrators should take it off line and check it for viruses.

The strategy sounds straightforward enough. A scan is just a search for Internet addresses -- what we do every time we use search engines such as Google. The difference is, a virus sends out many scans to many different destinations in a very short period of time, as it searches for machines to infect.

"The difficulty was figuring out how many scans were too many," Shroff said. "How many could you allow before an infection would spread wildly? You want to make sure the number is small to contain the infection. But if you make it too small, you'll interfere with normal network traffic."

"It turns out that you can allow quite a large number of scans, and you'll still catch the worm."

Shroff was working at Purdue University in 2006 when doctoral student Sarah Sellke suggested making a mathematical model of the early stages of worm growth. With Saurabh Bagchi, assistant professor of electrical and computer engineering at Purdue, they developed a model that calculated the probability that a virus would spread, depending on the maximum number of scans allowed before a machine was taken off line.

In simulations, they pitted their model against the Code Red worm, as well as the SQL Slammer worm of 2003. They simulated how far the virus would spread, depending on how many networks on the Internet were using the same containment strategy: quarantine any machine that sends out more than 10,000 scans.

They chose 10,000 because it is well above the number of scans that a typical computer network would send out in a month.

"An infected machine would reach this value very quickly, while a regular machine would not," Shroff explained. "A worm has to hit so many IP addresses so quickly in order to survive."

In the simulations pitted against the Code Red worm, they were able to prevent the spread of the infection to less than 150 hosts on the whole Internet, 95 percent of the time.

A variant of Code Red worm (Code Red II) scans the local network more efficiently, and finds vulnerable targets much faster. Their method was effective in containing such worms. In the simulations, they were able to trap the worm in its original network -- the one that would have started the outbreak -- 77 percent of the time.

Anywhere from 10 to 20 percent of the time, it spread to one other network, but no further. The remaining 3 to 13 percent of the time, it escaped to more networks, but the infection was slowed.

In all cases, there was a dramatic decrease in the spread of the worm within the first hour.

To use this strategy, network administrators would have to install software to monitor the number of scans on their networks, and would have to allow for some downtime among computers when they initiate a quarantine.

According to Shroff, that wouldn't be a problem for most organizations. Very small businesses -- ones with only a few servers -- may have more difficulty taking their machines off line.

"Unfortunately there is no complete foolproof solution," Shroff said. "You just keep trying to come up with techniques that limit a virus's ability to do harm."

He and his colleagues are working on adapting their strategy to stop targeted Internet worms -- ones that have been designed specifically to attack certain vulnerable IP addresses.

This work was supported by a grant from the National Science Foundation, and Sarah Sellke's NSF Graduate Fellowship.

Contact: Ness Shroff, (614) 247-6554; Shroff.11@osu.edu

Pam Frost Gorder | newswise
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>