Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spanish scientists design a procedure for detecting shadows in satellite images

02.06.2008
Scientists from the University of Malaga have devised a procedure for accurately identifying shadows in high-resolution images captured by satellites, making it possible to obtain more precise information on streets, buildings, vehicles, crops and other elements detected from space.

The results of this research have been passed to a company in the Parque Tecnológico de Andalucía (Andalusia Technology Park) which is already applying them in satellite image processing and detection of urban changes.

The Professor of the IT Engineering School at the University of Malaga and co-author of the study, Vicente Arévalo, explained to SINC that high-resolution images provided by current satellites and planes “have opened a new era in the field of teledetection, and that resolution enhancement also means that shadows, something inherent in any image, take on special significance”.

For example, shadows fall on buildings, cars or street furniture, the researcher commented, and in an aerial photograph “it is very important to detect what is or is not a shadow to correctly identify the elements that appear in it”.

Arévalo pointed out that the identification of shadows enables the subsequent application of specific information recovery techniques, as well as the preparation of three-dimensional designs. Thanks to the shadows, IT engineers can estimate, amongst other parameters, the height of elements in a landscape, such as a house.

To carry out this study, researchers have used images captured by the QuickBird satellite, also used for capturing aerial photographs of the Google Earth virtual atlas. Images obtained with this satellite have a 60 cm/pixel resolution, i.e. 60 cm of the real terrain captured in a pixel (the smallest unit comprising a digital image, defined by its brightness and colour). Once the image has been taken, its colour components are analysed and the so-called “seeds”, small groups of pixels that have a greater probability of being shadows, are identified through circles. To these “seeds” other surrounding pixels are added which are significant statistically for detecting the shadowy areas of the photo as accurately as possible in a process in which other tools such as edge detectors are also used.

The method developed by Andalusian researchers has been successfully tested in images obtained under different lighting conditions, in both urban and rural areas. For example, in a field of olive trees, it is easy to quantify the trees and see their size more accurately if shadows are properly identified in the high resolution images.

However, scientists’ main line of work is to detect urban changes, seeing how certain areas of cities change over time. Their studies make it possible to detect things ranging from earth movements or changes in the area to discovering whether anyone has built a swimming pool on their land. “We do not judge the legality of these types of actions”, Arévalo said, but the high resolution images of areas do help the work of surveyors.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>