Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough made in electronics technology

05.07.2002


Researchers at Oregon State University have made a significant breakthrough in the technology to produce crystalline oxide films, which play roles in semiconductor chips, flat panel displays and many other electronic products.



In a report to be published Friday in the journal Science, the OSU scientists explain a way to create these crystalline thin films at temperatures far lower than those used currently, and with no need to be produced in a vacuum as the current technology usually requires.

This fundamental advance may eventually open up important new applications in the electronics, computer and high technology industries, making new products possible or lowering the cost of those already being created.


The study was a joint effort of scientists in the Department of Chemistry and Department of Electrical and Computer Engineering at OSU, in collaboration with two private technology companies, Hewlett Packard and ReyTech Corp. of Bend, Ore. The research was supported by Hewlett Packard and $1.25 million in grants from the National Science Foundation. OSU has applied for a patent on the new advance.

"This is a general method of producing oxide films that could bring down manufacturing costs tremendously and change the way many electronic or photonic products are created," said Douglas Keszler, an OSU professor of chemistry. "It’s a real breakthrough that could shake up a few people in the high tech and thin film industries. There should be quite a bit of interest."

According to Keszler, many electronic or photonic devices contain crystalline oxide films that can conduct electricity, serve as insulators or have desirable optical properties. To achieve crystallinity, it’s usually necessary to manufacture the films in high vacuum conditions and at extraordinarily high temperatures of more than 1,800 degrees. Sophisticated equipment is needed to achieve both the vacuum condition and high temperature, and the process is expensive.

By contrast, the new approach discovered by OSU scientists and engineers uses a simple, water-based chemistry to deposit and crystallize these films at dramatically lower temperatures, about 250 degrees, or just slightly hotter than boiling water. No vacuum is necessary.

"We found that you can take certain materials that contain water and let them dehydrate slowly and at low temperatures, and still observe crystallinity," Keszler said. "Processing is done in a bath, rather than requiring expensive technology, vacuums and very high temperatures. There has never been a way before to both deposit and crystallize electronic or photonic films at such low temperatures."

The very need for such high manufacturing temperatures, the OSU researchers said, has in fact precluded the use of these electronic thin films on some applications, such as plastics, that would melt and be destroyed by temperatures of 1,800 degrees. And the new approach could also facilitate cheaper mass production of some products, whereas in the past the need for sophisticated technology and space constraints might have limited manufacturers to making one product or a few at a time.

According to John Wager, a co-author on the study and professor of electrical and computer engineering at OSU, it may take further research and increased collaboration with private industry to implement the new approach in large-scale commercial manufacturing processes. But the possibilities seem promising, he said.

"It’s always difficult to predict exactly how a new technology will be received and used in manufacturing products," Wager said. "But clearly this offers some ways to reduce costs or create new products that never were possible before."

The OSU researchers said it may now be more practical to place electronic devices on a plastic substrate, such as a credit card or for other uses. There may be applications with flat panel displays, insulating glass, storage batteries, use of these films as a corrosion barrier, in liquid crystal displays, or in some of the exciting new products made possible by transparent electronics.

And the new technology could be developed to play a key role in the semiconductor industry, Wager said.

"Everything in semiconductor manufacturing is moving to lower temperature processing in order to create smaller devices," Wager said. "Atoms move around too much at high temperatures. This new approach to creating crystalline thin films could find practical, mass production applications in semiconductor chips once the technology is fully developed to its potential."

"We expect a fair amount of interest," Wager said.


###
By David Stauth, 541-737-0787

SOURCE: John Wager, 541-737-2994


Douglas Keszler | EurekAlert!

More articles from Information Technology:

nachricht Fraunhofer IPT and Ericsson launch 5G-Industry Campus Europe, Europe’s largest Industrial 5G Research Network
13.12.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings
11.12.2019 | Alpen-Adria-Universität Klagenfurt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

Tracking lab-grown tissue with light

13.12.2019 | Medical Engineering

Newfound Martian aurora actually the most common; sheds light on Mars' changing climate

13.12.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>