Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European research consortium VELOX supports programming of multi-core systems

21.05.2008
A huge challenge facing the computing community today is how to make programming multi-cores easier. With this goal in mind, the VELOX project, titled “An Integrated Approach to Transactional Memory on Multi-Core Computers” and funded by the European Comission with € 4 millions, launched its activities with the objective of delivering seamless transactional memory (TM) systems that integrate well at all levels of the system stack at the beginning of this year.

Coordinated by the Barcelona Supercomputing Center, the VELOX consortium gathers nine different partners that include top research and system integration organizations such as the University of Neuchâtel, the Technische Universität Dresden, Ecole Politechnique Fédérale de Lausanne, Tel Aviv University, Chalmers University of Technology as well as leading integrators from the IT industry such as AMD, Red Hat and VirtualLogix SAS. This three-year project will obtain some research results that will enable Europe to become lead in a subset of the TM domain.

The adoption of multi-core chips as the architecture-of-choice for mainstream computing will undoubtedly bring about profound changes in the way software is developed. In this brave new era, programs will need to be rewritten in a parallel way for computers that have multiple processing cores. One of the fundamental issues in developing parallel programs is a coordinated and orderly way of accessing shared data. The use of previous techniques such as fine grained locking as the multi-core programmer's coordination methodology is viewed by most experts as a dead-end since locking is too complicated for the average programmer.

The TM programming paradigm is a strong contender to become the approach of choice for replacing those coordination techniques and implementing atomic operations in concurrent programming. Combining sequences of concurrent operations into atomic transactions promises a great reduction in the complexity of both programming and verification, by making parts of the code appear to be sequential without the need to program fine-grained locks. Transactions remove from the programmer the burden of figuring out the interaction among concurrent operations that happen to conflict when accessing the same locations in memory.

“Thanks to the complementary skills of its partners, it will pave the way for key European researchers to make significant contributions to the ongoing revolution to make parallel programming easier for the masses”, says Osman Unsal, leader of the VELOX project. Mateo Valero, director of BSC, stressed that “the VELOX project is crucial to enable the supercomputing applications of today to run on the laptops of the near future.”

To make TM an effective tool, TM systems will need the right hardware and software support to provide scalability not only in terms of number of cores, but also in terms of code size and complexity. The objective of the VELOX project is to understand how to provide such support by developing an integrated TM stack. Such a TM stack would span a system from the underlying hardware to the high end application and would consist of the following components: CPU, operating system, runtime, libraries, compilers, programming languages and application environments.

The team includes internationally recognized TM experts in each of those components. These fully integrated TM systems will not only improve the understanding of TM designs but will greatly help in the adoption of the TM paradigm by the European software industry, making it a tool-of-choice for concurrent programming on multi-core platforms.

Renata Giménez Binder | alfa
Further information:
http://www.bsc.es/media/1662.pdf

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>