Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From a set of formulas to visible changes in liver cancer

19.05.2008
With systems biology methods, CancerSys investigates molecular- and cell-biological processes in the formation of tumors in the liver

Systems Biology is a young field with the overall aim of creating a holistic picture of dynamic life processes with regard to all levels - from the genome via the proteome and the organisation of the cell organelles all the way to the complete cell or even an entire organism.

In doing so, Systems Biology takes into consideration the dynamic interplay of the components involved. In order to achieve this high aspiration, Systems Biology combines quantitative methods used in molecular biology with knowledge gathered in mathematics, informatics and systems science.

The HepatoSys consortium was launched in 2004 as the first large and interdisciplinary network in the field of Systems Biology. Since then, more than 40 research groups all over Germany have applied themselves to the investigation of molecular- and cell-biological processes in the liver cell (hepatocyte). "In the course of the last few years we have laid the foundation for a systems biology investigation of hepatocytes", says CancerSys coordinator Prof. Dr. Jan Hengstler of the University of Dortmund.

Computer models for the simulation of signal transmission pathways were developed as well as standardized cell culture conditions and common process specifications to form a base for quantitative analysis of the processes within the cell and also for interdisciplinary collaboration. "On this basis, we can now turn toward more specific questions such as the processes involved in the evolution of liver cancer", explains Dr. Hengstler who has a leading part in the HepatoSys network as the coordinator of the cell biology platform.

CancerSys is aiming at two particular signal paths known to play a role in the development of cancer if they get out of control, namely, the beta-catenin- and the ras-signal paths. Both regulate the reproduction (proliferation) of liver cells and have an influence on their gene activity. The beta-catenin-path is particularly relevant in the center of the lobe of the liver whereas the ras-signals are dominant in the periportal area, i.e. close to the portal vein which is the gateway for blood entering the liver.

The objective of the CancerSys consortium is to construct dynamic models of these two signal paths and their interaction and to then integrate them into a three-dimensional simulation of the liver. "We created mathematical models on the basis of quantitative molecular- and cell-biological tests and then built a bridge from this set of formulas to the visible changes caused by the cancerous process in the liver", Hengstler said, in explaining their research objective. By means of this hitherto unique methodical approach, it is possible to graphically reconstruct which consequences a change - i.e. through gene mutations, viral diseases or toxic substances such as alcohol and certain medications - involves in the network of signal paths and can thus contribute to the development of cancer. Impressive first simulations can be viewed at http://inria.livertumor.hoehme.com.

The CancerSys research project was given the highest possible rating by the European Union brain-trust and is expected to take up work early in 2009. In the first instance, nine project partners with their research groups are participating. Four of them will work experimentally, four will work theoretically and one will work in both modes. Most of the research teams involved are from the HepatoSys consortium as well as from other German systems biology networks. International groups from Europe and the US will also take part. "Not only do we expect substantial progress from the network on the subject of liver cancer," says Hengstler. "CancerSys also signifies an expansion and better visibility for German systems biology research, especially for HepatoSys, on an international level". Thus the activities of CancerSys will have positive effects on Germany as a research location.

Ute Heisner | alfa
Further information:
http://www.sbmc08.de

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>