Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency Links: Researchers Identify ‘Sweet Spot’ for Radios in Tunnels

15.05.2008
Researchers at NIST have confirmed that underground tunnels - generally a difficult setting for radios - can have a frequency 'sweet spot' at which signals may travel several times farther than at other frequencies. The finding may point to strategies for enhancing rescue communications in subways and mines.

As part of a project to improve wireless communications for emergency responders, researchers at the National Institute of Standards and Technology (NIST) have confirmed that underground tunnels—generally a difficult setting for radios—can have a frequency “sweet spot” at which signals may travel several times farther than at other frequencies. The finding, which uses extensive new data to confirm models developed in the 1970s, may point to strategies for enhancing rescue communications in subways and mines.

The optimal frequency depends on the dimensions of the tunnel. For a typical subway-sized tunnel, the sweet spot is found in the frequency range 400 megahertz (MHz) to 1 gigahertz (GHz). This effect is described in one of two new NIST publications.* The reports are part of a NIST series contributing to the first comprehensive public data collection on radio transmissions in large buildings and structures. Historically, companies have designed radios based on proprietary tests. The NIST data will support the development of open standards for design of optimal systems, especially for emergency responders.

NIST researchers were surprised by how much farther signals at the optimal frequency traveled in above-ground building corridors, as well as underground. Tunnels can channel radio signals in the right frequency range because they act like giant waveguides, the pipelike channels that confine and direct microwaves on integrated circuit wafers, and in antenna feed systems and optical fibers. The channel shape reduces the losses caused when signals are absorbed or scattered by structural features. The waveguide effect depends on a tunnel’s width, height, surface material and roughness, and the flatness of the floor as well as the signal frequency. NIST authors found good agreement between their measured data and theoretical models, leading to the conclusion that the waveguide effect plays a significant role in radio transmissions in tunnels.

Lead author Kate Remley notes that the results may help design wireless systems that improve control of, for example, search and rescue robots in subways. Some handheld radios used by emergency responders for voice communications already operate within the optimal range for a typical subway, between around 400 MHz and 800 MHz. To provide the broadband data transfer capability desired for search and rescue with video (a bandwidth of at least 1 MHz), a regulatory change would be needed, Remley says.

The tunnel studies were performed in 2007 at Black Diamond Mines Regional Park near Antioch, Calif., an old complex used in the early 1900s to extract pure sand for glass production.

The second new NIST report** describes mapping of radio signals in 12 large building structures including an apartment complex, a hotel, office buildings, a sports stadium and a shopping mall.

The research is supported in part by the U.S. Department of Justice and the Department of Homeland Security. Both reports will be available on NIST’s Metrology for Wireless Systems Web page (http://www.boulder.nist.gov/div818/81802/MetrologyForWirelessSys/).

* K. A. Remley, G. Koepke, C. L. Holloway, C. Grosvenor, D.G. Camell, J. Ladbury, R.T. Johnk, D. Novotny, W.F. Young, G. Hough, M.D. McKinley, Y. Becquet and J. Korsnes. “Measurements to Support Modulated-Signal Radio Transmissions for the Public-Safety Sector”. NIST Technical Note 1546, April, 2008, http://www.boulder.nist.gov/div818/81802/MetrologyForWirelessSys/

pubs/R13_NIST_TN1546_Modulated_Signal_(Web)1.pdf.

** C. L. Holloway, W.F. Young, G. H. Koepke, K. A. Remley, D. G. Camell and Y. Becquet. “Attenuation of Radio Wave Signals Into Twelve Large Building Structures”. NIST Technical Note 1545.

Laura Ost | newswise
Further information:
http://patapsco.nist.gov/ImageGallery/details.cfm?imageid=540
http://www.nist.gov

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>