Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative antennas may signal a ‘new wave’ in healthcare provision

14.05.2008
Compact, wireless and power efficient body sensors that allow doctors to monitor illnesses and injuries remotely are a step closer thanks to new research.

The use of biosensors attached to the body for health monitoring is not new. However, antennas that enable such devices to be linked together efficiently on a patient’s body without wires are currently too uncomfortable to wear for a long time because they need to be large in order to maximise the strength of the signal being received. They can be reduced in size but this leads to the antenna being less efficient, meaning that the battery powering the device has to be recharged more frequently.

Experts in antennas and bioelectromagnetics at Queen’s University Belfast (QUB), with funding from the Engineering and Physical Sciences Research Council (EPSRC), have developed new types of antenna that get round these limitations.

Their work could revolutionise the way patient care is provided, making unnecessary visits for tests and check-ups a thing of the past. Instead, biosensors could gather data on heart rate, respiration, posture, gait etc, transmitting this information by radio signal to a control unit also on the patient’s body. The data could then be accessed by doctors via the internet or mobile phone, for example.

The new types of antenna are the first in the world to deliberately harness the so-called ‘creeping wave’ effect. With a conventional on-body antenna the majority of the signal is transmitted either away from the patient or inwards, where it is absorbed by the patient’s body which weakens the signal. The rest of the signal, though, hugs the skin’s surface and ‘creeps’ round the body where it is picked up by the control unit.

However, only a small amount of the signal behaves in this ‘creeping’ way and so its overall strength has to be increased to allow enough of it to reach the control unit. Although traditional antenna designs can be used, they are physically large and typically protrude up to 4cm from the body surface for the frequency bands used by systems such as WiFi. Reducing the size leads to poor system efficiency.

The new antennas developed at QUB solve these problems. They are specifically designed to accentuate the creeping wave effect by maximising the amount of signal radiated out to the antenna’s side, rather than inwards and outwards. They are up to 50 times more efficient than previously available designs of the same dimensions. Due to the lower power requirement resulting from this step change in on-body performance and efficiency, the QUB team has succeeded in reducing antenna thickness from 34mm to less than 5mm thick for their new patch antenna, for example.

The antennas can therefore be fitted almost anywhere on the patient without causing significant inconvenience and are sufficiently low-profile to be incorporated into clothing or worn as part of a wound dressing. One QUB design is now the subject of a patent application, with more anticipated.

The unique design of the new antennas could unlock the full potential of emerging ‘wireless body area network’ (WBAN) technology. A WBAN is a network of biosensors attached to different parts of a patient’s body. Patients wearing a WBAN could carry on with their normal lives – the doctor remotely monitoring the data gathered by the network would simply contact them to arrange appointments when needed.

“The UK leads the world in the development of wearable communications including WBAN antennas,” says Dr William Scanlon, who is leading the QUB project. “With EPSRC funding, our group at QUB, along with other related projects at the University of Birmingham, Queen Mary College and elsewhere, could help unleash the full potential of WBAN technology. We could change the way that a range of illnesses, injuries and conditions are monitored, perhaps within five years”.

Natasha Richardson | alfa
Further information:
http://www.qub.ac.uk
http://www.epsrc.ac.uk/

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>