Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The grid steps up a gear with EGEE III

08.05.2008
Enabling Grids for E-sciencE (EGEE) is the largest multi-disciplinary grid infrastructure in the world. Finding the Higgs boson; saving lives; addressing the energy problem; feeding the planet - the grid is swiftly becoming one of the extraordinary tools scientists use everyday. This month sees the start of the third phase of the project, EGEE-III, which is revolutionising the way data is analysed, stored and shared.

EGEE-III aims to expand and optimise the Grid infrastructure, which is currently used over 150,000 times per day by users working together on scientific domains ranging from biomedicine to fusion science. Co-funded by the European Commission, EGEE III brings together more than 120 organisations to produce a reliable and scalable computing resource available to the European and global research community. At present, it consists of 250 sites in 48 countries and more than 60,000 CPUs with over 20 Petabytes of storage, available to some 8,000 users 24 hours a day, 7 days a week.

These figures considerably exceed the goals planned for the end of the first four years of the EGEE programme, demonstrating the enthusiasm within the scientific community for EGEE and grid solutions. Ultimately EGEE would like to see a unified, interoperable grid infrastructure, and with this goal in mind is working closely with other European and world wide grid projects to help define the standards to make this happen.

One of the founding cases for EGEE and the grid came from the search for the Higgs boson, or “God Particle”. The computing demands of the Large Hadron Collider, the machine designed to search for the elusive particle, are presenting an unprecedented challenge, with over 15 Petabytes of data to be generated and processed each year. Analysing such a large amount of information will require computing facilities that don’t exist in a single location, but the grid can distribute the workload, and let researchers around the world work together on key problems.

The EGEE infrastructure has also been used to search through over 500,000 drug-like molecules in just a few weeks, to find drugs that will fight against bird flu. Finding potential solutions on the grid before going into the lab means huge numbers of unsuitable molecules can be ruled out without wasting precious time and physical resources. In the instance of a mutating virus this time-saving step could be life-saving.

Other scientists are using the grid to understand the complexity of muscle cells, calculate the dynamics of dark energy, simulate cell processes, predict protein structure, study pollution in the atmosphere and search for the genes that help wheat adapt to new threats. EGEE is opening up unprecedented amounts of computing power to researches across the globe and making it easy for them to share data and results.

The tools and techniques used in one discipline can often be recycled and used elsewhere, by other scientists, or even in the world of business and finance. where EGEE is being used in problems such as finding new oil reserves, simulating market behaviour and mapping taxation policy.

EGEE will hold its next conference, EGEE’08, in Istanbul, Turkey, 22-26 September 2008 (www.eu-egee.org/egee08). The conference will provide the perfect opportunity for both business and academic sectors to network with the EGEE communities, collaborating projects, developers, decision makers alike, to realize the vision of a sustainable, interoperable European grid.

Sarah Purcell | alfa
Further information:
http://www.eu-egee.org/

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>