Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The grid steps up a gear with EGEE III

08.05.2008
Enabling Grids for E-sciencE (EGEE) is the largest multi-disciplinary grid infrastructure in the world. Finding the Higgs boson; saving lives; addressing the energy problem; feeding the planet - the grid is swiftly becoming one of the extraordinary tools scientists use everyday. This month sees the start of the third phase of the project, EGEE-III, which is revolutionising the way data is analysed, stored and shared.

EGEE-III aims to expand and optimise the Grid infrastructure, which is currently used over 150,000 times per day by users working together on scientific domains ranging from biomedicine to fusion science. Co-funded by the European Commission, EGEE III brings together more than 120 organisations to produce a reliable and scalable computing resource available to the European and global research community. At present, it consists of 250 sites in 48 countries and more than 60,000 CPUs with over 20 Petabytes of storage, available to some 8,000 users 24 hours a day, 7 days a week.

These figures considerably exceed the goals planned for the end of the first four years of the EGEE programme, demonstrating the enthusiasm within the scientific community for EGEE and grid solutions. Ultimately EGEE would like to see a unified, interoperable grid infrastructure, and with this goal in mind is working closely with other European and world wide grid projects to help define the standards to make this happen.

One of the founding cases for EGEE and the grid came from the search for the Higgs boson, or “God Particle”. The computing demands of the Large Hadron Collider, the machine designed to search for the elusive particle, are presenting an unprecedented challenge, with over 15 Petabytes of data to be generated and processed each year. Analysing such a large amount of information will require computing facilities that don’t exist in a single location, but the grid can distribute the workload, and let researchers around the world work together on key problems.

The EGEE infrastructure has also been used to search through over 500,000 drug-like molecules in just a few weeks, to find drugs that will fight against bird flu. Finding potential solutions on the grid before going into the lab means huge numbers of unsuitable molecules can be ruled out without wasting precious time and physical resources. In the instance of a mutating virus this time-saving step could be life-saving.

Other scientists are using the grid to understand the complexity of muscle cells, calculate the dynamics of dark energy, simulate cell processes, predict protein structure, study pollution in the atmosphere and search for the genes that help wheat adapt to new threats. EGEE is opening up unprecedented amounts of computing power to researches across the globe and making it easy for them to share data and results.

The tools and techniques used in one discipline can often be recycled and used elsewhere, by other scientists, or even in the world of business and finance. where EGEE is being used in problems such as finding new oil reserves, simulating market behaviour and mapping taxation policy.

EGEE will hold its next conference, EGEE’08, in Istanbul, Turkey, 22-26 September 2008 (www.eu-egee.org/egee08). The conference will provide the perfect opportunity for both business and academic sectors to network with the EGEE communities, collaborating projects, developers, decision makers alike, to realize the vision of a sustainable, interoperable European grid.

Sarah Purcell | alfa
Further information:
http://www.eu-egee.org/

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>