Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrating embedded systems

28.04.2008
Embedded digital control systems are powerful and ubiquitous in the technologies we use, but getting them to cooperate is difficult. That situation is changing.

Researchers at the EU-funded DECOS project say they have created tools to allow such embedded systems to operate more smoothly together, a benefit to industry and ultimately to users who depend on the technologies to operate in a safe and predictable manner.

The use of embedded system controls is increasing apace, with expensive cars containing up to 80 engine control units (ECUs). They can range from the simple, like the smarts in your digital watch, to the critical, like the fly-by-wire systems of modern jets. We entrust them with our lives in our cars and trains.

Already, embedded systems account for half of the revenue in the computing market, and almost every technical advance, from ABS brakes to personal video recorders to avionics, rely on them.

The problem is, modern embedded systems often behave like individualists. This behaviour can be a result of the development process. Software can be the work of different programmers. Different manufacturers may develop the design specifications and interfaces.

The result is federated, often autonomous modules that must co-operate to achieve an overall goal, and to avoid ultimately endangering life or property.

Now, we’re talking
The integrator – say, a car company or aircraft manufacturer – wants embedded systems to talk the same language using well-defined linking interfaces, and to perform in a predictable way under all circumstances. But this goal is complex and costly, and can often result in unreliable performance.

“The idea behind [our research] was to fight the growing complexity of distributed architectures,” says Manfred Gruber from Austrian Research Centres (ARC), and coordinator of the DECOS project. “Each new function in a car needs a new ECU, and creates a highly federated structure with maybe 70 ECUs or more.”

This situation means modern, co-operating embedded systems are difficult to develop, and very difficult to test and maintain.

“We want to reduce the number of necessary processors to a few, integrated systems,” says Erwin Schoitsch, project deputy coordinator, also from ARC. “But if you integrate several applications – some safety critical, some not – you have to make sure they do not interfere with each other.”

The DECOS team sought to achieve these goals by developing a dependable middleware of high-level services based on several time-triggered core protocol services: time-triggered architecture, layered FlexRay and time-triggered Ethernet.

These time-triggered protocols were developed to respond to safety-critical applications requirements, with a special focus on real-time applications. The development means lower costs and higher protocol efficiency and predictability.

DECOS developed the middleware architecture, components and tools for design, development, deployment, diagnosis, and validation and verification.

The project created a prototype tool-chain and test-bench, guiding the complete process, from model to deployment. The package includes validation and certification support, as well as hardware and software components and basic software building blocks.

DECOS test-bench
For example, the generic test-bench guides engineers through the verification and validation process, and supports a modular verification process.

“It provides a framework, with some new specific tools and the integration of existing external tools and safety standards,” says Schoitsch.

To validate the approach, DECOS applied their results to three vital application fields for embedded systems: automotive, avionics and industrial control.

These application demonstrators come with domain-specific tests and established the applicability of the DECOS middleware and tools.

DECOS’ architecture for automotive systems work with such functions as adaptive lighting and door positioning. For industrial control, the DECOS architecture helped to suppress critical vibrations when nano-imprinting.

Within the aerospace domain, the DECOS team developed a demonstrator for a shift in airplane flap control. Flaps give an aircraft its lift at lower speeds. DECOS shifted the current state of the art – a mechanic synchronisation control – to all-electronic synchronisation.

“It’s a long-term proposition, but we demonstrated that it was feasible,” says Schoitsch.

Safety-critical avionics systems are a critical way to demonstrate the capabilities of the DECOS tools. But the project’s results can be used anywhere, from trains to medical systems, mechatronics or robotics.

TTTech, one of the partners, developed and will now commercialise a time-triggered Ethernet system. The tool-bench has led to the development of another new product, which was integrated into the Certified Software Factory developed by Esterel Technologies.

DECOS also led to a spin-off by the Budapest University of Technology and Economics. Several spin-off and follow-up projects, such as MOGENTES, again run by ARC, are planned.

Leading lights
The project took 42 months to complete, was funded with €15m and involved 18 of Europe’s leading companies. Global players such as Infineon, Airbus, Thales, EADS, Liebherr Aerospace, Audi, Fiat, and Hella were involved.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89689

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>