Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can I, Robot, do with that?

21.04.2008
A new approach to robotics and artificial intelligence (AI) could lead to a revolution in the field by shifting the focus from what a thing is to how it can be used. Identifying what a robot is looking at is a key approach of AI and machine cognition. So far ambitious researchers have managed to teach a computer’s vision system to recognise up to 100 objects. Granted, this is a huge achievement, yet far short of an I, Robot scenario.

But there is another radically different approach available that European researchers have applied to the study of robotics and AI. The MACS project does not attempt to get robots to perceive what something is, but how it can be used.

This is an application of the cognitive theory of ‘affordances’, developed by the American psychologist James J. Gibson between 1950 and 1979. He rejected behaviourism and proposed a theory of ‘affordances’, a term signifying the range of possible interactions between an individual and a particular object or environment. The theory focuses on what a thing or environment enables a user to do.

Computer vision might identify the object as a chair, but a system of affordances will instruct the robot that it can be used for sitting. This system is key to the new approach. The system means that once an affordance-perceiving robot ‘sees’ a flat object of a certain height and rigidity, it knows that the object can be used for sitting.

But it also means that an affordance-based robot will be able to determine that the flat object of a certain height and rigidity is too heavy to lift, and must be pushed, and that it can be used to hold a door open.

Ultimately, the aim of goal-oriented, affordance-based machine cognition is to enable a robot to use whatever it finds in its environment to complete a particular task.

“Affordance based perception would look at whether something is graspable, or if there is an opening, rather than worrying about what an object is called,” explains Dr Erich Rome, coordinator of the MACS project.

Five ambitious goals
‘MACS’ stands for multi-sensory autonomous cognitive systems interacting with dynamic environments for perceiving and learning affordances. Started in September 2004, the project began with five scientific and technological goals.

First the researchers sought to create new software architecture to support affordance-based robot control. Second, they wanted to use affordances to direct a robot to complete a goal-directed task. Third, they wanted to establish methods for perceiving, learning and reasoning about affordances.

Next, they wanted to create a system so the robot could acquire knowledge of new affordances through experimentation or observation. Finally the MACS team planned to demonstrate the entire system on a robotic platform called the Kurt3D.

The EU-funded project successfully created an integrated affordance-inspired robot control system. This included the implementation of a perception module, a behaviour system, an execution control module, planner, learning module and affordance representation repository.

The proof-of-concept has been shown in various experiments with the simulator MACSim and in the real robot Kurt3D.

“We performed a physics-based simulation using a model of the robot,” says Rome. We tested single components like perception and learning, and also the entire architecture in simulation. And then we tested the whole system in the robot.”

In that test, Kurt3D used affordance-based perception to identify what could be grasped, where there was free space, and what was traversable. The robot found an object, picked it up, and put it on a pressure-activated switch that controlled a door. Then, once the robot detected the passage, it opened and moved through the door.

The robot improvises
The tests were a remarkable achievement. The robot essentially figured out how to manipulate its environment to achieve a real-world goal. It showed a capacity for improvisation.

“This is the very early stages of this approach,” warns Rome. “So we are a long way from commercialisation. There are others working on it. But what is unique about the MACS project is that we introduced direct support for the affordances concept in our architecture.”

And MACS has also made affordances a more mainstream concept in robotics, perception and cognition. Some of the partners are involved in other projects, like ROSSI, which tracks the relation of language to actions (http://www.rossiproject.eu).

“The project helped generate a lot of interest in the concept and it is also now a very visible topic,” says Rome.

In all, MACS and its work have moved robotics into a new paradigm, teaching robots to identify what they can do.

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89677

More articles from Information Technology:

nachricht Intelligent Deletion of Superfluous Digital Files
21.02.2020 | Otto-Friedrich-Universität Bamberg

nachricht High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"
19.02.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>