Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linköping University researchers break "unbreakable" crypto

15.04.2008
Quantum cryptography has been regarded as 100-percent protection against attacks on sensitive data traffic. But now a research team at Linköping University in Sweden has found a hole in this advanced technology.

The risk of illegal accessing of information, for example in money transactions, is necessitating more and more advanced cryptographic techniques.

When you send an encrypted message via the computer network, one of the most difficult problems to solve is how the key should be transmitted. One way is to send it by courier (either by regular mail or, as in spy movies, a person with a briefcase attached to his wrist). Another way is a "public key," which is used for online banking and security functions in Web browsers (https://).

A courier must of course be reliable, otherwise there is a risk that the key will be secretly copied on the way. A public key is regarded as secure, since enormous calculations are required to break the long strings of data bits - some 2,000 - that make up the key.

But a new technology called quantum cryptography is supposed to be absolutely secure. Thus far, however, very few people have made use of it. It requires special hardware, for example with a type of laser that emits polarized light particles (photons) via optic fiber or through the air. Some companies and banks in Austria are testing the system, and trials are underway with satellite-TV transmission.

The security is guaranteed by the laws of quantum mechanics.
Quantum-mechanical objects have the peculiar property that they cannot be measured upon or manipulated without being disturbed. If somebody tries to copy a quantum-cryptographic key in transit, this will be noticeable as extra noise. An eavesdropper can cause problems, but not extract usable information.

But Jan-Åke Larsson, associate professor of applied mathematics at Linköping University, working with his student Jörgen Cederlöf, has shown that not even quantum cryptography is 100-percent secure. There is a theoretical possibility that an unauthorized person can extract the key without being discovered, by simultaneously manipulating both the quantum-mechanical and the regular communication needed in quantum cryptography.

"The concern involves authentication, intended to secure that the message arriving is the same as the one that was sent. We have scrutinized the system as a whole and found that authentication does not work as intended. The security of the current technology is not sufficient," says Jan-Åke Larsson.

In the article, published in the prestigious journal IEEE Transactions on Information Theory, the authors propose a change that solves the problem.

"We weren't expecting to find a problem in quantum cryptography, of course, but it is a really complicated system. With our alteration, quantum cryptography will be a secure technology," says Jan-Åke Larsson.

Contact: Jan-Åke Larsson, phone: +46 (0)13-281468; e-mail: jalar@mai.liu.se

Åke Hjelm, | idw
Further information:
http://www.vr.se
http://expertsvar.se

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>