Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could accelerate computing to speed of light

21.06.2002


Researchers at the University of Toronto have discovered a new technique to form tiny perfect crystals that have high optical quality, a finding that could usher in a new era of ultra-fast computing and communication using photons instead of electrons.



These crystals, called photonic crystals, could greatly improve both speed and bandwidth in communications systems, says University Professor Geoffrey Ozin of the Department of Chemistry.

"All of the promises of what photonic crystals can do, in terms of guiding light and bending light in incredibly small spaces, may be achieved by the assembly of patterns of micrometer-size photonic crystals all in a plane," he says. "The breakthrough possibly represents a step towards the development of miniaturized optical components earmarked for the next generation of all-optical computers and telecommunication systems."


The technique, described in the June issue of Advanced Functional Materials, carves geometrically and spatially well-defined microscopic patterns into the surface of a material. The surface relief patterns are then exposed to an alcohol-based solution of synthetic microspheres. These microspheres exclusively enter the surface relief patterns and self-assemble into perfectly arranged microstructures called photonic crystals. The crystals have the property of being able to act as tiny optical components for managing photons in circuits of light similar to how semi-conductor transistors control electrons in circuits of electricity.

Ozin, who holds the Canada Research Chair in Materials Chemistry, says the findings represent a step towards significantly reducing the size of optical components, devices and circuits.



CONTACT: Professor Geoffrey Ozin, Department of Chemistry, 416-978-2082, gozin@chem.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca


Nicolle Wahl | EurekAlert!

More articles from Information Technology:

nachricht Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor
18.02.2020 | Tokyo Institute of Technology

nachricht Artificial intelligence is becoming sustainable!
17.02.2020 | Politecnico di Milano

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>