Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hurricane Forecasters Adopt NCAR Radar Technique

11.04.2008
The National Hurricane Center will implement a new technique this summer, developed by researchers at the National Center for Atmospheric Research (NCAR) and the Naval Research Laboratory (NRL), to continually monitor landfalling storms in the United States.

The system, which relies on existing coastal Doppler radars, provides details on hurricane winds and central pressure every six minutes, indicating whether a hurricane is gathering strength in its final hours before reaching shore.

The technique, known as VORTRAC (Vortex Objective Radar Tracking and Circulation), was successfully tested by the National Hurricane Center last year.

"VORTRAC will enable hurricane specialists, for the first time, to continually monitor the trend in central pressure as a dangerous storm nears land," says NCAR scientist Wen-Chau Lee. "With the help of VORTRAC, vulnerable communities can be better informed of sudden changes in hurricane intensity."

Lee collaborated with NRL's Paul Harasti and NCAR's Michael Bell to develop VORTRAC. Funding came primarily from the National Science Foundation and the National Oceanic and Atmospheric Administration. The NHC is part of NOAA's National Weather Service.

One of VORTRAC's strengths is that it can use radar data to estimate the barometric pressure at the center of a hurricane, a key measure of its intensity.

"VORTRAC allows us to take the wind measurements from the radar, turn the crank, and have a central pressure drop out of a calculation," says Colin McAdie, a meteorologist at NHC. "This will be a valuable addition to the tools available to the forecaster."

Avoiding surprises
Rapidly intensifying storms can catch vulnerable coastal areas by surprise. Last year, Hurricane Humberto struck near Port Arthur, Texas, after unexpectedly strengthening from a tropical depression to a hurricane in less than 19 hours. In 2004, Hurricane Charley's top winds increased from 110 to 145 miles per hour (about 175 to 235 kilometers per hour) in just six hours as the storm neared Florida's southwest coast.

Lee and his collaborators applied VORTRAC retroactively to the two hurricanes and found that the technique would have accurately tracked their quick bursts in intensity.

"VORTRAC has demonstrated that it can capture sudden intensity changes in potentially dangerous hurricanes in the critical time period when these storms are nearing land," Bell says.

New data from existing radars
VORTRAC uses the Doppler radar network established by NOAA in the 1990s. About 20 of these radars are scattered along the Gulf and Atlantic coastlines from Texas to Maine. Each radar can measure winds blowing toward or away from it, but no single radar could provide an estimate of a hurricane's rotational winds and central pressure until now.

The VORTRAC team developed a series of mathematical formulas that combine data from a single radar near the center of a landfalling storm with general knowledge of Atlantic hurricane structure in order to map the approaching system's rotational winds. VORTRAC also infers the barometric pressure in the eye of the hurricane, a very reliable index of its strength.

"By merging several techniques, we can now provide a missing link in short-term hurricane prediction," Harasti says.

Forecasters using VORTRAC can update information about a hurricane each time a NOAA Doppler radar scans the storm, which can be as often as about every six minutes. Without such a technique, forecasters would need at least two coastal radars in close proximity to each other in order to obtain the same information. But most of the network's radars are too far apart to qualify.

Each radar can sample conditions out to about 120 miles. This means VORTRAC can track an incoming hurricane for at least several hours, and possibly even as long as a day or more, depending on the storm's speed, trajectory, and size.

To monitor the winds of a landfalling hurricane, forecasters now rely on aircraft to drop instrument packages into the storm that gather data on winds and pressure. Due to flight logistics, the aircraft can take readings no more than every hour or two, which means that a sudden drop in barometric pressure, and the accompanying increase in winds, may be difficult to anticipate.

In time, VORTRAC may also help improve long-range hurricane forecasts by using data from airborne Doppler radars or spaceborne radars to produce detailed information about a hurricane that is far out to sea. Forecasters could input the data to computer models to improve three- and five-day forecasts.

In addition, many nations along the Pacific Rim and Indian Ocean have their own emerging Doppler radar networks. Those nations, which are vulnerable to tropical cyclones, may also be able to make use of VORTRAC.

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>