Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology for Small Form Factor Optical Storage

20.06.2002


Philips has demonstrated the world’s first fully functional miniature optical disc drive using blue laser technology. Up to 1 Gbyte of data can be stored on a single-sided optical disc of just 3 cm in diameter, matching the size constraints of portable devices such as digital cameras, mobile phones, PDAs and portable Internet devices. This prototype illustrates Philips’ leadership in optical storage technology, which is driven by superb media robustness and the low cost per Mbyte of the storage medium, making it optimally suited for large-scale distribution of pre-recorded content.

Drastic size reduction


Recent advances in blue laser technology, and Philips innovations in the area of optical storage media and miniaturised opto-mechanics are the ideal ingredients for small form factor optical drives. The resulting high storage density can be exploited to reduce the disc size while still providing a high storage capacity (e.g. 1 Gbyte on a disc of 3 cm diameter, i.e. more than on a present CD ROM). To fulfil the stringent space requirements of portable devices, all dimensions need to be reduced, particularly the building-height. This issue is addressed by the drastically miniaturized optical system now demonstrated by Philips.

From glass to plastic

The main factor determining the building height of optical disc drives is the optical objective lens system. Through the development of the world’s smallest objective lens for blue laser recording, the height of the optical disc drive was reduced to 7.5 mm, from the 12.5 mm or more typical in current drives. The lens was made of plastic, instead of glass, allowing greater design freedom and hence a smaller drive height. Another step was the development of an ultra-thin version of the actuator that positions and focuses the laser beam onto the optical disc.

Using these miniature key components, a first fully functional prototype optical drive of just 5.6 x 3.4 x 0.75 cm3 was realized. Further research is underway to achieve an even higher level of miniaturization. The demonstrator set-up, with the driving electronics currently still on a separate board, successfully played back MP3 data from a 3 cm diameter optical disc.

: Koen Joosse | newscenter
Further information:
http://www.research.philips.com

More articles from Information Technology:

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

nachricht Largest, fastest array of microscopic 'traffic cops' for optical communications
12.04.2019 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>