Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers perform multi-century high-resolution climate simulations

04.04.2008
Using state-of-the-art supercomputers, Lawrence Livermore National Laboratory climate scientists have performed a 400-year high-resolution global ocean-atmosphere simulation with results that are more similar to actual observations of surface winds and sea surface temperatures.

The research, led by LLNL atmospheric scientist Govindasamy Bala, appears in the April 1 edition of the Journal of Climate.

The researchers used the Community Climate System Model (CCSM), which is sponsored by the National Science Foundation and Department of Energy. CCSM is a global ocean-atmosphere modeling framework designed to simulate the climate of the Earth. It is a comprehensive general circulation model that consists of complex submodels for the atmosphere, ocean, ice and land. In the earlier versions, spectral methods were available to solve the transport of water vapor, temperature and momentum in the atmosphere.

In the LLNL simulation, the researchers assessed the performance of a new dynamical method for atmospheric transport that was developed at NASA by Ricky Rood (a co-author of the study at the University of Michigan) and Shian-Jiann Lin of the National Oceanic and Atmospheric Administration. The new method is called finite volume transport.

The Livermore team found substantial improvements in the simulated global surface winds and sea surface temperatures. Team members also noted large improvements in the simulation of tropical variability in the Pacific, distribution of Arctic sea ice thickness and the ocean circulation in the Antarctic Circumpolar Current.

Climate scientists used LLNL's supercomputer, Thunder, to run high-resolution climate model simulations.

“We found that this coupled model is a state-of-the-art climate model with simulation capabilities in the class of those used for assessments for the Intergovernmental Panel on Climate Change (IPCC),” Bala said.

The simulation was performed on the LLNL supercomputer Thunder, using about 500 processors or slightly more than 10 percent of Thunder’s capacity. The 400-year-long simulation, performed over a period of three months, was part of an LLNL Grand Challenge Computing project. This simulation, at about 100-kilometer resolution for the atmosphere, is the highest resolution multi-century CCSM simulation to date.

Under the same Grand Challenge Computing project, the researchers earlier performed a 1,000-year-long simulation corresponding to the climate of pre-industrial times that enabled the scientists to estimate the “climate noise” in frost days, snow depth and stream flow in the Western United States. The collaborative study between LLNL and the Scripps Institution of Oceanography, which appeared in a Science article earlier this year, pinpointed the cause of that regional diminishing water flow to humans.

The present study is a collaborative effort between LLNL, the University of Michigan, Scripps Institution of Oceanography and NCAR. Other LLNL researchers include Art Mirin, Julie McClean, Dave Bader, Peter Gleckler and Krishna Achuta Rao (who is now at the Indian Institute of Technology Delhi).

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne M. Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>