Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create next-generation software to identify complex cyber network attacks

19.03.2008
Researchers in George Mason University’s Center for Secure Information Systems have developed new software that can reduce the impact of cyber attacks by identifying the possible vulnerability paths through an organization’s networks.

By their very nature networks are highly interdependent and each machine’s overall susceptibility to attack depends on the vulnerabilities of the other machines in the network. Attackers can take advantage of multiple vulnerabilities in unexpected ways, allowing them to incrementally penetrate a network and compromise critical systems. In order to protect an organization’s networks, it is necessary to understand not only individual system vulnerabilities, but also their interdependencies.

“Currently, network administrators must rely on labor-intensive processes for tracking network configurations and vulnerabilities, which requires a great deal of expertise and is error prone because of the complexity, volume and frequent changes in security data and network configurations,” says Sushil Jajodia, university professor and director of the Center for Secure Information Systems. “This new software is an automated tool that can analyze and visualize vulnerabilities and attack paths, encouraging ‘what-if analysis’.”

The software developed at Mason, CAULDRON, allows for the transformation of raw security data into roadmaps that allow users to proactively prepare for attacks, manage vulnerability risks and have real-time situational awareness. CAULDRON provides informed risk analysis, analyzes vulnerability dependencies and shows all possible attack paths into a network. In this way, it accounts for sophisticated attack strategies that may penetrate an organization’s layered defenses.

CAULDRON’s intelligent analysis engine reasons through attack dependencies, producing a map of all vulnerability paths that are then organized as an attack graph that conveys the impact of combined vulnerabilities on overall security. To manage attack graph complexity, CAULDRON includes hierarchical graph visualizations with high-level overviews and detail drilldown, allowing users to navigate into a selected part of the big picture to get more information.

“One example of this software in use is at the Federal Aviation Administration. They recently installed CAULDRON in their Cyber Security Incident Response Center and it is helping them prioritize security problems, reveal unseen attack paths and protect across large numbers of attack paths,” says Jajodia. “While currently being used by the FAA and defense community, the software is applicable in almost any industry or organization with a network and resources they want to keep protected, such as banking or education.”

Funding for this software development was provided by the defense, homeland security and intelligence communities, the FAA and Mason. Researchers in the Center for Secure Information Systems involved in the software development include Jajodia; Steven Noel, associate director; and Pramod Kalapa, senior research scientist.

About The Center for Secure Information Systems
Housed in the Volgenau School of Information Technology and Engineering, the Center for Secure Information Systems (CSIS) was established in 1990, as the first academic center in security at a U.S. university. One of the nation’s premier security research organizations, it is also a charter NSA Center of Academic Excellence in Information Assurance Education. CSIS maintains a dedicated full-time team of scientists and engineers with a wide range of expertise, including vulnerability analysis, network attack modeling, intrusion detection, penetration testing and related areas. The range and depth of experience of CSIS team members allows the center to understand and anticipate client requirements, and to formulate innovative solutions and build high-quality tools to meet those requirements.
About George Mason University
George Mason University, located in the heart of Northern Virginia’s technology corridor near Washington, D.C., is an innovative, entrepreneurial institution with national distinction in a range of academic fields. With strong undergraduate and graduate degree programs in engineering, information technology, biotechnology and health care, Mason prepares its students to succeed in the work force and meet the needs of the region and the world. Mason professors conduct groundbreaking research in areas such as cancer, climate change, information technology and the biosciences, and Mason’s Center for the Arts brings world-renowned artists, musicians and actors to its stage. Its School of Law is recognized by U.S. News & World Report as one of the top 35 law schools in the United States.

Jennifer Edgerly | EurekAlert!
Further information:
http://www.gmu.edu

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>