Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new coupling method for simulating combustion processes

18.03.2008
The FOCUS project was carried out between 2005 and 2007 by Olivier Gicquel, his research team at the EM2C laboratory of the Ecole Centrale of Paris, and the IDRIS team at CNRS in France.

Using DEISA research infrastructure the researchers have developed a new method for simulating combustion processes that will have a real and practical impact on a number of industrial applications.

Combustion is involved in more than 80% of primary energy conversion processes worldwide. It is used, for example, in aeronautical and ground transportation, waste incineration and in various other industries in which burners and engines are required.

Optimization of burners has led to increased levels of complexity and design innovation. This very complexity increases the likelihood that the burners will malfunction, for example through combustion instabilities. Because the developments of industrial burner prototypes can be very expensive, numerical simulation of combustion processes has become compulsory.

Various different methods exist for performing these simulations. The most recent is called Large Eddy Simulation (LES), and can be viewed as an intermediate technique between direct numerical simulation and classical modelization. Under this approach, larger turbulent motions of the flow field are explicitly computed and resolved, whereas the effects of the smaller ones are only modelled.

To gain a better insight into the full process, the researchers of the FOCUS group have developed an original approach. This proposed approach takes advantage of an efficient coupling between an LES solver and codes devoted to radiative heat transfers, where data exchanges occur at time intervals controlled by the physical times of each phenomenon.

“This project is innovative both from a theoretical point of view and in terms of the numerical aspects, with the development of new models in state-of-the-art simulations”, says Olivier Gicquel, a researcher at the EM2C laboratory and one of the leaders of the FOCUS project.

Numerical simulations of turbulent reacting flows including pollutant formation and radiative heat transfers require not only well-adapted models, but also large computational resources. Research infrastructures like DEISA are therefore very much needed in this area.

More information on the FOCUS project available at http://www.deisa.org/press/FOCUS.pdf

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.org/press/FOCUS.pdf

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>