Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology improves odds for critically ill

17.03.2008
Large numbers of unnecessary deaths and avoidable medical complications in intensive care units (ICU) are attributable to the difficulties of treating high glucose levels in critically ill patients’ blood. That is about to change for the better thanks to a new automated insulin delivery system developed by European researchers.

A common side effect of stress and trauma in critically ill patients is a rapid increase in blood glucose levels. As with diabetes, the levels can be reduced and controlled by the infusion of insulin. But glucose levels peak and change much more quickly in the ICU environment and there is little room for trial and error. If the situation is not normalised, then complications and even deaths can and do occur.

Twice in the past, Europe-wide studies and trials were put in place to try and come up with a solution to the problem. But in both cases they were prematurely halted because researchers could not solve the problem of overcompensating and patients developing hypoglycaemia, or abnormally low blood sugar levels.

“What these studies did clearly indicate is that the establishment of normal glucose levels in critically ill patients is very difficult to achieve without some sort of automated system to help the nurses,” says Dr Martin Ellmerer, scientific coordinator of the CLINICIP project which has developed just such a system.

Nurses’ no-nonsense approach
CLINICIP started by surveying ICUs in a number of European hospitals and interviewing nursing staff. “We found out that ICU staff did not want to see additional catheters in patients, they did not want extra equipment taking up space, and costs had to be kept right down so as not to eat into funds for other vital equipment,” says Ellmerer. “So, right from the start the requirements were really tough.”

Partners in this EU-funded project, academic medical institutions plus one private-sector medical equipment manufacturer, decided they needed to develop a two-step approach. “We first developed a decision-support system which met all the criteria outlined by the ICU staff, and later developed a fully automated system,” he tells ICT Results.

At the heart of both systems is a sophisticated bit of computer software (an algorithm) written especially for this project.

With the decision-support system, nurses still have to draw blood from patients in the traditional way and test it for glucose levels. They enter the information via the user interface – a touch screen – the researchers have developed. The algorithm takes over at this stage, calculates how much insulin is needed and automatically administers it. It also alerts the nurse when a new blood sample needs to be taken and analysed – half an hour in the worst cases and up to four hours in less severe cases.

“We have fully functioning prototypes of the decision-support system which we successfully trialled in ICUs at different hospitals around Europe,” Ellmerer says. The project’s industrial partner, B. Braun Melsungen AG, is ready to go into commercial production of the system working together with the clinical partners.

“We will first have to go through an approval process and the systems should be commercially available to hospitals in mid-2009,” Ellmerer says. B. Braun is one of the leading manufacturers of infusion systems used in hospitals, and the CLINICIP technology will be incorporated into these as it was during the trials.

Developing the real deal
At the same time the prototype was being developed and tested, CLINICIP researchers were working on sensors for a fully automated, closed-loop control system to both monitor glucose levels and administer insulin with no involvement from a nurse.

The drawback of this is that a dedicated needle is necessary. “Unfortunately, this is unavoidable for a fully automated system,” Ellmerer points out. Using fibre-optic technology the needle draws blood, sends it for analysis and then returns it to the patient’s vein as well as administering the necessary dose of insulin.

“We have performed a proof-of-concept study to show we are able to establish glucose control in a clinical setting,” Ellmerer says.

To develop the sensor technology further and then commercialise it, a spin-off company will be set up with Ellmerer as CEO and one of the shareholders. The other shareholders are individuals from project partners in CLINICIP. The spin-off will work closely with B. Braun and the partners, although they are not stakeholders in it.

Ellmerer expects the fully automated two-step system to be commercially available in 2011.

“Our research and the products which result from it should have a pretty fundamental impact on ICUs,” he says. “They should improve survival chances, reduce complications, such as sepsis and organ failure, and reduce the time patients need to spend in ICUs.”

Ahmed ElAmin | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89612

More articles from Information Technology:

nachricht Electronic stickers to streamline large-scale 'internet of things'
17.07.2018 | Purdue University

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>