Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich researchers test high-speed WLAN network

13.03.2008
Performance boost for wireless networks

According to the communication theory, only a limited amount of data can be transmitted within a given bandwidth for wireless communication. Ever since these limits were revealed 60 years ago, we have been trying to reach the boundaries determined by physics as efficiently as possible. In light of the growing significance of cellular phone networks and WLAN connections, scientists are seeking new ways to transfer more data than ever before – after all, transmission capacities are in short supply and, therefore, a valuable commodity.

Messages from the babble

Thanks to so-called MIMO technology, which stands for “Multiple Input Multiple Output”, it is possible for several transceivers to communicate with each other on the same bandwidth at the same time. Transceivers have several antennas. “It is as if several people are communicating with several other people”, explains Helmut Bölcskei, professor at the Communications Technology Laboratory at ETH Zurich. “At face value, it just seems like an incomprehensible babble. If the listeners skillfully combine the hubbub, however, they can filter out the original messages.” In terms of wireless communication, this means you can transfer far more information than with existing procedures.

Practical capability proven

ETH Zurich researchers had already furnished proof that MIMO technology works in a similar test facility three years ago – albeit with only one user. However, until recently it was still unclear as to whether and how the increase in capacity could be implemented in complex networks with several users. This is the aim of the European research pro-ject “MASCOT” (Multiple-Access Space-Time Coding Testbed), in which ETH Zurich is involved with its Communications Technology Laboratory and Integrated Systems Laboratory. It was with this in mind that the prototype developed at these two institutes was enhanced.

For the first time, the Zurich-based researchers were able to demonstrate that the principle of multiple antenna systems is actually feasible for use in complex wireless networks both theoretically and using their test facility. In doing so, they succeeded in constructing a compact multi-user system, currently with three stations in a bench scale, where every station transmits or receives via four antennae. This meant that the utilization of the frequency range for each of the three users could be up to four times higher than with present-day WLAN networks.

All set for WLAN applications

One crucial point of the research project was the development of procedures to unscramble the jumble of signals in the receiver as efficiently as possible. This presented the researchers with a problem: the more antennas and participants the system has, the more data that can in principle be transmitted; however, this also means that its demodulation is all the more difficult. As the antennas are meant to be installed in inexpensively manufactured equipment, the signals have to be decoded with as inexpensive a chip as possible, i.e. a small one. The smaller the chip, however, the smaller its computational power.

Thanks to a deeper understanding of the theoretical principles of multi-antenna systems, the researchers were able to develop efficient decoding algorithms that require a much smaller chip area. The receivers developed at ETH Zurich are currently so efficient that the new MIMO technology can easily be installed in commercially available laptops and WLAN stations.

It may be some time before MIMO technology is used in cellular phones as the antennas on hand to date require a certain distance for reliable data transfer. Consequently, the antennas have to be improved first.

MIMO-Testbed
ETH Zurich researchers used the real-time demonstrator of a MIMO WLAN network to test the practicality of their theoretical algorithms under real conditions. The test envi-ronment currently consists of 3 stations, each equipped with four antennas to transmit or receive. This enables the overall data rate of 54 Mbps (megabits per second) in modern WLAN systems to be increased to up to 216 Mbps with only one antenna for each station.

Roman Klingler | alfa
Further information:
http://www.ethz.ch

More articles from Information Technology:

nachricht Research alliance: TRUMPF and Fraunhofer IPA ramping up artificial intelligence for industrial use
06.08.2020 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Novel approach improves graphene-based supercapacitors
03.08.2020 | University of Technology Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>