Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich researchers test high-speed WLAN network

13.03.2008
Performance boost for wireless networks

According to the communication theory, only a limited amount of data can be transmitted within a given bandwidth for wireless communication. Ever since these limits were revealed 60 years ago, we have been trying to reach the boundaries determined by physics as efficiently as possible. In light of the growing significance of cellular phone networks and WLAN connections, scientists are seeking new ways to transfer more data than ever before – after all, transmission capacities are in short supply and, therefore, a valuable commodity.

Messages from the babble

Thanks to so-called MIMO technology, which stands for “Multiple Input Multiple Output”, it is possible for several transceivers to communicate with each other on the same bandwidth at the same time. Transceivers have several antennas. “It is as if several people are communicating with several other people”, explains Helmut Bölcskei, professor at the Communications Technology Laboratory at ETH Zurich. “At face value, it just seems like an incomprehensible babble. If the listeners skillfully combine the hubbub, however, they can filter out the original messages.” In terms of wireless communication, this means you can transfer far more information than with existing procedures.

Practical capability proven

ETH Zurich researchers had already furnished proof that MIMO technology works in a similar test facility three years ago – albeit with only one user. However, until recently it was still unclear as to whether and how the increase in capacity could be implemented in complex networks with several users. This is the aim of the European research pro-ject “MASCOT” (Multiple-Access Space-Time Coding Testbed), in which ETH Zurich is involved with its Communications Technology Laboratory and Integrated Systems Laboratory. It was with this in mind that the prototype developed at these two institutes was enhanced.

For the first time, the Zurich-based researchers were able to demonstrate that the principle of multiple antenna systems is actually feasible for use in complex wireless networks both theoretically and using their test facility. In doing so, they succeeded in constructing a compact multi-user system, currently with three stations in a bench scale, where every station transmits or receives via four antennae. This meant that the utilization of the frequency range for each of the three users could be up to four times higher than with present-day WLAN networks.

All set for WLAN applications

One crucial point of the research project was the development of procedures to unscramble the jumble of signals in the receiver as efficiently as possible. This presented the researchers with a problem: the more antennas and participants the system has, the more data that can in principle be transmitted; however, this also means that its demodulation is all the more difficult. As the antennas are meant to be installed in inexpensively manufactured equipment, the signals have to be decoded with as inexpensive a chip as possible, i.e. a small one. The smaller the chip, however, the smaller its computational power.

Thanks to a deeper understanding of the theoretical principles of multi-antenna systems, the researchers were able to develop efficient decoding algorithms that require a much smaller chip area. The receivers developed at ETH Zurich are currently so efficient that the new MIMO technology can easily be installed in commercially available laptops and WLAN stations.

It may be some time before MIMO technology is used in cellular phones as the antennas on hand to date require a certain distance for reliable data transfer. Consequently, the antennas have to be improved first.

MIMO-Testbed
ETH Zurich researchers used the real-time demonstrator of a MIMO WLAN network to test the practicality of their theoretical algorithms under real conditions. The test envi-ronment currently consists of 3 stations, each equipped with four antennas to transmit or receive. This enables the overall data rate of 54 Mbps (megabits per second) in modern WLAN systems to be increased to up to 216 Mbps with only one antenna for each station.

Roman Klingler | alfa
Further information:
http://www.ethz.ch

More articles from Information Technology:

nachricht Marine Skin dives deeper for better monitoring
23.04.2019 | King Abdullah University of Science & Technology (KAUST)

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>