Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual human puts HIV drug to test

10.03.2008
Harnessing the power of supercomputing, ‘grid’ technology and using a so-called ‘virtual physiological human’ (VPH), European researchers have simulated how well an HIV drug blocks a key protein in the lethal virus. The days of trial and error could be numbered.

Thanks to the power of supercomputing, scientists in the UK have shown an early example of the virtual physiological human in action. Carried out earlier this year, the method could pave the way to personalised drug treatment, such as for HIV patients developing resistance to their current regimes.

The human body is too complex to replicate using a single computer or even several computers strapped together. To fully simulate our inner workings, the VPH has to link networks of computers nation- and worldwide. With all this power assembled, scientists can then carry out studies of "supercomputing" proportions, such as the effects of a drug at the organ, tissue, cell and even molecular levels.

A team from University College London (UCL) in the UK ran simulations to predict how strongly the HIV-inhibiting drug saquinavir would bind to three versions of a viral protein called HIV-1 protease. The protein is used by the virus to propagate itself and, in mutated forms, associated with resistance to the antiretroviral saquinavir. The results are published in the Journal of the American Chemical Society.

Saquinavir is just one of a number of drugs designed to block HIV-1 protease. Currently, doctors have no way to match the drugs to the profile of the virus as it changes in each patient. ‘Trial and error’ is the only solution. With VPH, doctors would be able to see which drugs would be most effective for any given patient.

Borrowed supercomputing
Team leader Professor Peter Coveney of UCL says the study is a first step towards the ultimate goal of “on-demand” medical computing, where doctors could one day “borrow” supercomputing time from national grids to make critical decisions on life-saving treatments.

“For an HIV patient, a doctor could perform an assay to establish the patient’s genotype and then rank the available drugs’ efficacy against that patient’s profile based on a rapid set of large-scale simulations, enabling the doctor to tailor the treatment accordingly,” he offers as an example.

But the professor concedes that the sheer computing power needed to run these simulations is huge. In this latest study, the trials had to be carried out across several supercomputers running off both the UK’s National Grid Service and the US TeraGrid. The work took two weeks and used the same amount of computing power as that needed to perform a long-range weather forecast.

“We have some difficult questions ahead of us, such as how much of our computing resources could be devoted to helping patients and at what price,” says Coveney. “At present, such simulations … might prove costly for the UK National Health Service, but technological advances and those in the economics of computing would bring costs down.”

EU support for the study came from the ViroLab (‘Virtual laboratory for decision support in viral disease treatment’) project. Coveney and his team are now looking at all the protease inhibitor drugs in the same way. A new EU-funded VPH initiative will have €72 million at its disposal to boost collaboration between clinicians and scientists exploring patient-specific medical treatments based on modern modelling and simulation methods.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89595

More articles from Information Technology:

nachricht New system by TU Graz automatically recognises pedestrians’ intent to cross the road
27.05.2019 | Technische Universität Graz

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>