Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From glass eyes to colour-fast digital prints

07.06.2002


Top quality colour printing could be revolutionised thanks to the revival in Bristol of an old printing process once used to create, among other things, colour charts for selecting glass eyes. Art researchers from the University of the West of England have discovered a 21st century use for the process, known as collotype, which fell out of favour during the early 1900s. As an added bonus, new inks are being developed which unlike current computer colour printouts, won`t fade over time.



In the past, the process, which was slow and extremely labour intensive for printers, used gelatine-coated plates to create accurate reproductions of works of art, with all the subtle colour tones of the original. However staff from UWE`s Faculty of Art, Media and Design have revived the technique and found that it can be linked up with computerised printing technology to open up new vistas in accurate colour reproduction.

The findings of the UWE research have just been revealed in a paper given by Dr Paul Thirkell at an international conference in Leipzig, Germany.


"UWE is now a world authority in this technique, which was so nearly lost," said Steve Hoskins, director of UWE`s Centre for Fine Print Research. "This was the first international Collotype conference and enabled print experts from around the world to learn from our discoveries."

"Collotype was one of the first photomechanical printing methods to be developed during the mid-nineteenth century, and was a means of commercially reproducing some of the most exact facsimiles ever produced. Despite its unparalleled image and colour fidelity, the process relied heavily on the skill of highly trained printers to make it worthwhile.

"Collotype declined as printing techniques such as offset lithography and letterpress took over in the mid-twentieth century, although the last printer capable of the process did not close until the 1980s. This was Cotswold Collotype at Wotton-under-Edge, in Gloucestershire, which from the 1920s until the 1960s produced art posters for the home. Owned for a time by Brooke Bond, the works also printed cigarette cards and more quirkily, shade-charts for the NHS showing the subtle variations in the colours of glass eyes that were available."

As well as providing a faithful record of original artworks, the collotype process could also answer a growing need for permanent, archive-quality records. Already, digitally printed reproductions using synthetic inks have been found to fade and lack permanence. Further avenues for research include developing the special papers and inks required for collotype. None of the original ink manufacturers exists, but UWE researchers are working on developing suitable inks based on traditional ingredients such as pure pigment and linseed oil, in a final marrying of old and new technologies.

Julia Weston | alfa
Further information:
http://www.uwe.ac.uk

More articles from Information Technology:

nachricht Terahertz wireless makes big strides in paving the way to technological singularity
19.02.2019 | Hiroshima University

nachricht Gearing up for 5G: A miniature, low-cost transceiver for fast, reliable communications
19.02.2019 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>