Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One million trillion ‘flops’ per second targeted by new Institute for Advanced Architectures

25.02.2008
‘Exascale’ computing envisioned by Sandia and Oak Ridge researchers

Preparing groundwork for an exascale computer is the mission of the new Institute for Advanced Architectures, launched jointly at Sandia and Oak Ridge national laboratories.

An exaflop is a thousand times faster than a petaflop, itself a thousand times faster than a teraflop. Teraflop computers —the first was developed 10 years ago at Sandia — currently are the state of the art. They do trillions of calculations a second. Exaflop computers would perform a million trillion calculations per second.

The idea behind the institute —under consideration for a year and a half prior to its opening — is “to close critical gaps between theoretical peak performance and actual performance on current supercomputers,” says Sandia project lead Sudip Dosanjh. “We believe this can be done by developing novel and innovative computer architectures.”

Ultrafast supercomputers improve detection of real-world conditions by helping researchers more closely examine the interactions of larger numbers of particles over time periods divided into smaller segments.

“An exascale computer is essential to perform more accurate simulations that, in turn, support solutions for emerging science and engineering challenges in national defense, energy assurance, advanced materials, climate, and medicine,” says James Peery, director of computation, computers and math.

The institute is funded in FY08 by congressional mandate at $7.4 million. It is supported by the National Nuclear Security Administration and the Department of Energy’s Office of Science. Sandia is an NNSA laboratory.

One aim, Dosanjh says, is to reduce or eliminate the growing mismatch between data movement and processing speeds.

Processing speed refers to the rapidity with which a processor can manipulate data to solve its part of a larger problem. Data movement refers to the act of getting data from a computer’s memory to its processing chip and then back again. The larger the machine, the farther away from a processor the data may be stored and the slower the movement of data.

“In an exascale computer, data might be tens of thousands of processors away from the processor that wants it,” says Sandia computer architect Doug Doerfler. “But until that processor gets its data, it has nothing useful to do. One key to scalability is to make sure all processors have something to work on at all times.”

Compounding the problem is new technology that has enabled designers to split a processor into first two, then four, and now eight cores on a single die. Some special-purpose processors have 24 or more cores on a die. Dosanjh suggests there might eventually be hundreds operating in parallel on a single chip.

“In order to continue to make progress in running scientific applications at these [very large] scales,” says Jeff Nichols, who heads the Oak Ridge branch of the institute, “we need to address our ability to maintain the balance between the hardware and the software. There are huge software and programming challenges and our goal is to do the critical R&D to close some of the gaps.”

Operating in parallel means that each core can work its part of the puzzle simultaneously with other cores on a chip, greatly increasing the speed a processor operates on data. The method does not require faster clock speeds, measured in faster gigahertz, which would generate unmanageable amounts of heat to dissipate as well as current leakage.

The new method bolsters the continued relevance of Moore’s Law, the 1965 observation of Intel cofounder Gordon Moore that the number of transistors placed on a single computer chip will double approximately every two years.

Another problem for the institute is to reduce the amount of power needed to run a future exascale computer.

“The electrical power needed with today’s technologies would be many tens of megawatts — a significant fraction of a power plant. A megawatt can cost as much as a million dollars a year,” says Dosanjh. “We want to bring that down.”

Sandia and Oak Ridge will work together on these and other problems, he says. “Although all of our efforts will be collaborative, in some areas Sandia will take the lead and Oak Ridge may lead in others, depending on who has the most expertise in a given discipline.” In addition, a key component of the institute will be the involvement of industry and universities.

A spontaneous demonstration of wide interest in faster computing was evidenced in the response to an invitation-only workshop, “Memory Opportunities for High-Performing Computing,” sponsored in January by the institute.

Workshop organizers planned for 25 participants but nearly 50 attended. Attendees represented the national labs, DOE, National Science Foundation, National Security Agency, Defense Advanced Research Projects Agency, and leading manufacturers of processors and supercomputing systems.

Ten years ago, people worldwide were astounded at the emergence of a teraflop supercomputer — that would be Sandia’s ASCI Red — able in one second to perform a trillion mathematical operations.

More recently, bloggers seem stunned that a machine capable of petaflop computing — a thousand times faster than a teraflop — could soon break the next barrier of a thousand trillion mathematical operations a second.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov, (505) 845-7078

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>