Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers design copper connections for high-speed computing

14.02.2008
Connections fabricated between computer chips, external circuitry and processors

As computers become more complex, the demand increases for more connections between computer chips and external circuitry such as a motherboard or wireless card. And as the integrated circuits become more advanced, maximizing their performance requires better connections that operate at higher frequencies with less loss.

Improving these two types of connections will increase the amount and speed of information that can be sent throughout a computer, according to Paul Kohl, Thomas L. Gossage chair and Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. Kohl presented his work in these areas at the Materials Research Society fall meeting.

The vertical connections between chips and boards are currently formed by melting tin solder between the two pieces and adding glue to hold everything together. Kohl’s research shows that replacing the solder ball connections with copper pillars creates stronger connections and the ability to create more connections.

“Circuitry and computer chips are made with copper lines on them, so we thought we should make the connection between the two with copper also,” said Kohl.

Solder and copper can both tolerate misalignment between two pieces being connected, according to Kohl, but copper is more conductive and creates a stronger bond.

With funding from the Semiconductor Research Corporation (SRC), Kohl and graduate student Tyler Osborn have developed a novel fabrication method to create all-copper connections between computer chips and external circuitry.

The researchers first electroplate a bump of copper onto the surface of both pieces, a process that uses electrical current to coat an electrically conductive object with metal. Then, a solid copper connection between the two bumps is formed by electroless plating, which involves several simultaneous reactions that occur in an aqueous solution without the use of external electrical current.

Since the pillar, which is the same thickness as a dollar bill, is fragile at room temperature, the researchers anneal it, or heat it in an oven for an hour to remove defects and generate a strong solid copper piece. Osborn found that strong bonds were formed at an annealing temperature of 180 degrees Celsius. He has also been investigating how misalignments between the two copper bumps affect pillar strength.

“I’ve also studied the optimal shape for the connections so that they’re flexible and mechanically reliable, yet still have good electrical properties so that we can transmit these high frequency signals without noise,” said Osborn.

The researchers have been working with Texas Instruments, Intel and Applied Materials to perfect and test their technology. Jim Meindl, director of Georgia Tech’s Microelectronics Research Center and professor in the School of Electrical and Computer Engineering, and Sue Ann Allen, professor in the School of Chemical and Biomolecular Engineering, have also collaborated on the work.

In addition to this new method for making vertical connections between chips and external circuitry, Kohl is also developing an improved signal transmission line with the help of graduate student Todd Spencer.

“Several very long communication pathways exist inside a computer that require a very high performance electrical line that can transmit at higher frequencies over long distances,” explained Spencer.

This is especially important in high-performance servers and routers where inter-chip distances can be large and signal strength may be significantly degraded. Kohl and Spencer have developed a new way to link high-speed signals between chips using an organic substrate, with funding from the Interconnect Focus Center, one of the Semiconductor Research Corporation/Defense Advanced Research Projects Agency (DARPA) Focus Center Research Programs.

Fabrication begins with an epoxy fiberglass substrate with copper lines on one side. The substrate is coated with a polymer and the areas without copper lines are exposed to ultraviolet (UV) light, which disintegrates the polymer where it’s not wanted. Then, the researchers coat the substrate with another polymer that hardens when exposed to UV light. Layers of titanium and copper are added on top of each copper line. When the layered substrate is heated at 180 degrees Celsius, the first polymer layer decomposes into carbon dioxide and acetone, which diffuse out leaving an air pocket.

“The amount of electrical loss relates to the connection’s sensitivity at higher frequencies,” explained Spencer. “Just having this air pocket there reduces our signal loss greatly.”

The researchers are currently designing a coaxial cable for this chip-to-chip signal link, which should greatly increase the maximum signal frequency the connection can carry.

Companies that make computer chips and package them into a device are very interested in these technologies, said Kohl.

“If these connections can be produced at a reasonable cost, they could be very important in the future because you’re giving the customer a better product for the same cost,” said Kohl.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>