Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Processor design gets mathematical sweetener

30.01.2008
A breakthrough microchip specification language will allow ambiguous English to be replaced by a mathematically precise description of processor functions and design. Better yet, it applies to every stage of microprocssor design. The upshot could be millions of euros saved by microchip producers.

Microchip design is a tricky business. First, there is a question of functionality. Engineers describe, in minute detail, what a particular microchip must do, in plain English. It is an essential task detailing the chip specifications for each stage of the microchip creation process: design, fabrication and verification.

Unfortunately, English is not a mathematically precise language. So, problems of interpretation are rife. Worse, at each development stage engineers are obliged to render the English specification or ‘spec’ list into a mathematically precise function set.

But worst of all, each stage uses different languages, and those languages vary between microchip companies. It is hugely inefficient and prone to error.

That is all set to change. “Before property specification language (PSL), there was no industry standard for describing microchip properties,” says Cindy Eisner, coordinator of PROSYD and Senior Architect for Verification Technologies at the IBM Haifa Research Laboratory. “Now the IEEE has adopted PSL as a standard specification language. So, we now have an industry standard for microprocessor design.”

PROSYD’s mission was, first, to create tools to deploy PSL for chip design, fabrication and verification. The project then used these tools to demonstrate PSL’s benefits. Finally, it sought to foster a revolution in chip design by promoting PSL as a new industry standard.

Mission accomplished, with aplomb. The EU project sought to reduce design errors by 50% but also increase design efficiency. At the end of the two-year €7 million project, PROSYD demonstrated a staggering reduction in design errors of up to 100%, at the same time increasing design efficiency by 16 to 22%.

After designers become more familiar with the new toolset and language, an even more impressive gain in efficiency can be expected, suggests Eisner.

It seems obvious now. If one stage of microchip development needs a precise description language, then should we not describe every stage the same way?

Or perhaps not so obvious…
Not quite. PSL grew out of IBM’s verification language SUGAR created in 1994 to standardise just the verification stage. Before SUGAR, there was no standard way to verify a chip. Developers made up their own languages and passed them down, like grandma’s prized soup recipes.

But once SUGAR arrived, microprocessor design hit upon a Eureka moment: why not describe every stage of chip creation the same way! Then the IEEE, the professional association for electronic engineers, took up the task and PSL/SUGAR became the standard.

PROSYD’s key contribution is the large suite of tools that link PSL across the microchip production process. There are over 16 tools in the set, which make PSL easy to deploy.

This is not the only achievement by PROSYD, though. The project’s case studies offer firm proof of the benefits of PSL and the PROSYD tools.

The project also led to unexpected benefits. PROSYD developed a very cool tool that will take a list of desired properties and actually design a microprocessor sub-circuit with those functions – something like machines creating themselves.

“It’s a very early version of the tool,” remarks Eisner, “you couldn’t use it to design a whole chip, but it could be useful to design a simple sub-circuit. It would be very useful for circuits that are fairly simple, but time-consuming to do.”

PROSYD’s long-term goal, not envisioned for the lifetime of the original project, was nothing less than a revolution in the microchip industry. That seems to be happening already. Actors outside the project are taking PROSYD and running with it, setting up conferences and producing materials to disseminate PSL and PROSYD tools. So now, finally, microchip design gets a unified, mathematically precise description language.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89179

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>