Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the limits of chip miniaturisation

09.01.2008
Over the last four decades, computer chips have found their way into virtually every electronic device in the world. During that time they have become smaller, cheaper and more powerful, but, for a team of European researchers, there is still plenty of scope to push back the limits of miniaturisation.

The first generation of CMOS (complementary metal-oxide semiconductor) chips were based on a design process with lithographic features defining regions inside the transistors of 10 micrometres or more. The chips in most products in use today have features more than a hundred times smaller – just 65 nanometres (nm) or 90nm, approximately 1,000 times less than the width of a human hair. That may be small, but in the competitive semiconductor industry, where size is of high importance, it is not small enough.

A reduction in minimum feature size means more transistors per chip, more transistors means more computing power, and more power means electronic systems – mobile phones, PCs, satellites, vehicles, etc. – will gain in functionality and performance. And, because the processed silicon wafers out of which chips are made are expensive (setting up a factory to produce them costs €3 billion) using less of them to do more means the trend toward such devices becoming cheaper can continue.

“The semiconductor industry is in the business of selling square millimetres of silicon. So, by cramming more transistors into a chip you’re delivering more capacity, more functionality and more computing power for the same price. It’s why things like mobile phones, LCD TVs and DVD players are coming down in price,” notes Gilles Thomas, the director of R&D Cooperative Programs at STMicroelectronics in Crolles, France, the world’s fifth biggest semiconductor manufacturer and Europe’s largest semiconductor supplier.

Taking the ‘O’ out of CMOS
Over the last three and a half years, STMicroelectronics has coordinated two large EU-funded projects to push back the limits of miniaturisation in the semiconductor industry. The NanoCMOS initiative, ending in June 2006, developed the technology to create a 45nm generation (or technology node) of chips.

A follow-up project, called Pullnano and coordinated by Thomas, is currently working on developing nodes as small as 32nm and even 22nm. At that diminutive size, semiconductor manufacturing is continuing to test Moore’s Law, an assumption spelled out by Intel co-founder Gordon E Moore, in 1965, predicting that the number of transistors that can be cost-effectively placed on a chip will double approximately every two years.

“The work of NanoCMOS and Pullnano has moved in that direction, although there is probably 12 or 15 more years to go before we hit a practical and economical limit on how small the nodes can become,” Thomas explains.

At the 32nm scale, in particular, quantum mechanical effects come into play in a big way. One major problem the Pullnano researchers have solved is reducing current leakage at the logic gate by using a hafnium compound-based insulator with higher dielectric strength than traditional silicon dioxide.

“We’ve achieved a 100-fold reduction in gate leakage,” Thomas says, noting that it is the first time the oxide – the ’O’ in CMOS – has been replaced with a different material.

Semiconductor makers’ “million-dollar question”
But as nodes keep getting smaller, a point will inevitably be reached when it is simply no longer feasible to continue to reduce the minimum feature size to make space for more transistors. Thomas describes this point as the semiconductor industry’s “million-dollar question”, although he estimates that it will probably be around the 16nm or 11nm mark.

“At that point it would not be economical or practical to go smaller, even though, in theory, it would be possible,” he says.

Even so, there is still some time before that point is reached. STMicroelectronics is due to start sampling the 45nm node semiconductors that the NanoCMOS project helped develop from next year, with a view to placing electronic systems using them in consumers’ hands by 2009.

By 2011, the Switzerland-headquartered company expects to start commercialising the 32nm node semiconductors being developed in the Pullnano initiative, with a view to developing a commercially viable 22nm process a couple of years after that.

“The 45nm process has already been validated through the production of an SRAM [static random access memory] chip, which we use to benchmark the performance of each generation. We will do the same with the 32nm process,” Thomas says.

NanoCMOS, which involved 20 partners, and Pullnano, which involves 38 partners, have helped give Europe an edge in semiconductor manufacturing, suggests Thomas, although he notes that the highly competitive sector remains dominated by American and Asian giants such as Intel and Samsung. Nonetheless, there is plenty of room for future growth, even as chips become cheaper.

Consumers will be the biggest beneficiary of the continuation of this miniaturisation trend. The economies of scale created within the $260 billion (+/- €183 billion) semiconductor industry have put electronics within the reach of the masses as the cost per transistor has fallen 2,500 times over the last 25 years. This is thanks to shrinking feature sizes and to increases in transistor manufacturing capacity by a factor of some 30,000.

“Just look at computer memory, in the early 1970s one megabyte cost more than a house, now it costs less than a piece of candy,” Thomas notes.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89282

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>