Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryptic messages boost data security

21.12.2007
The Swiss national elections in October 2007 provided the opportunity to witness quantum cryptography in ‘real-life’ action for the first time. Geneva was first in line to test the unbreakable data code developed by Swiss start-up company id Quantique, paving the way for a new era in data security.

The canton of Geneva became a world pioneer when it decided to use quantum cryptography to protect the dedicated line used for counting votes in the October national elections. The world’s first commercial quantum random number generator and quantum cryptography system was developed by the Swiss company id Quantique – a spin-off company of the University of Geneva – so the choice of Geneva to test the system in action was only appropriate.

The firm was founded in 2001 by four researchers from the University of Geneva: Nicolas Gisin, Grégoire Ribordy, Olivier Guinnard and Hugo Zbinden. According to Gisin: “Protection of the federal elections is of historical importance in the sense that, after several years of development and experimentation, this will be the first use of a 1 GHz quantum encrypter, which is transparent for the user, and an ordinary fibre-optic line to send data endowed with relevance and purpose. So this occasion marks quantum technology’s real-world début.”

All about Eve
Quantum cryptography, or quantum key distribution (QKD), enables two communicating parties to produce a shared random bit string know only to them, which can be used as a key to crypt and decrypt messages. An important and unique feature of quantum cryptography is the ability of the two communicating parties to quickly detect the presence of any third party trying to gain access to the key. This third party, the eavesdropper if you like, is commonly known as Eve among cryptographers. Quantum cryptography then is essentially all about cutting Eve out of the equation.

The use of the system developed by id Quantique makes it possible to detect Eve’s presence almost immediately and to take counter measures. The system works, however, not only when there is an eavesdropper on the line but also when data become corrupted accidentally. Which, in the case of the Swiss elections, is an equally important feature.

For Robert Hensler, the Geneva State Chancellor, the application of quantum cryptography will go a long way towards alleviating concerns over eVoting. “In this context, the value added by quantum cryptography concerns not so much protection from outside attempts to interfere as the ability to verify that the data have not been corrupted in transit between entry and storage,” he is quoted as saying.

SwissQuantum, a new standard for data security
The Swiss elections are an important milestone for id Quantique, but they are just the initial phase of a wider-ranging plan which is expected to lead to the creation of a pilot quantum communications network in Geneva similar to the nascent internet network in the United States back in the 1970s. Known as SwissQuantum, this next stage in the project aims to provide a platform for testing and validating the quantum technologies that will help to protect the communications networks of the future.

The project’s plans, however, extend beyond the Geneva region with a longer-term view of expanding the network throughout the country and beyond. This technology will appeal in particular to certain core industries of the economy which depend particularly on data security – banks, insurance companies, high-tech businesses,… In this regard, it is hoped that the SwissQuantum name will come to be seen as the best guarantee for reassuring potential clients of the soundness of this scientific innovation.

id Quantique is a partner in the European project SECOQC which began in April 2004. “The SECOQC project makes it possible for id Quantique’s engineers to interact with some of the best groups worldwide in the field of quantum cryptography,” observes Ribordy. Together, the project partners intend to lay the foundations for a long-range, high-security communication network that combines the entirely novel technology of quantum key distribution with components of classical computer science and cryptography.

Ensuring effective data security is the next challenge for global data networks. SECOCQ will provide European citizens, companies and institutions with a tool that allows them to face the threats of future interception technologies, thus creating significant advantages for the European economy.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89350

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>