Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid test to ensure high milk quality

05.11.2019

Standards of food safety and food quality have never been higher in Germany and throughout the European Union. This is especially true in the dairy industry. Yet despite such high standards, traces of impurities, pesticides and antibiotics can find their way into milk, with sometimes serious consequences for consumer health. In the EU-funded project MOLOKO, Fraunhofer researchers have teamed up with partners to develop a new optoplasmonic sensor designed to provide fast, on-site analysis of safety and quality parameters for milk. This early-warning system will bring the industry substantial savings in time and money as well as a drastic reduction in wasted product.

Food safety is a critical factor in the food industry, not least in the dairy sector. Here, udder infections can lead to harmful organisms entering the milk, and chemical substances such as antibiotics or pesticides can contaminate the product via fodder or as a result of inadequate control of equipment and storage facilities.


Chip with integrated light source and light detector for analyzing contaminants in milk

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

In order to prevent adulterated milk entering the food chain, checks are conducted throughout the entire production process and supply chain. Yet these standard tests are expensive and time consuming. Samples are taken from milk tankers containing a mixture of product collected from any number of dairy farms and then analyzed in the lab.

If the milk proves to be contaminated, the entire load must be destroyed, with high losses for all of the farmers and dairies concerned. If there were a test with which farmers could check their own milk before it is collected by the tanker, such wastage could be avoided.

Quality check delivers results in five minutes

In the project MOLOKO (Multiplex phOtonic sensor for pLasmonic-based Online detection of contaminants in milK), 12 partners from seven countries – including one dairy – have devised a fast and inexpensive test for identifying quality factors in milk.

In a test lasting around five minutes, a new optoplasmonic sensor analyzes the product for a total of six substances, thereby providing a supplementary check and an early- warning system within the supply chain, well before the milk is pumped into the tanker. The sensor is functionalized with receptors for specific antibodies that serve as indicators of various quality and safety parameters for milk. It thereby allows dairy farms to carry out automated, on-site quantitative analyses.

Unique integrated sensor architecture

The entire system consists of a reusable microfluidic chip, organic light-emitting transistors (OLETs) or diodes (OLEDs), a sensor comprising organic photodetectors (OPDs), a nanostructured plasmonic grating and the specific antibodies.

The organic photodetector is undergoing development at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, and the microfluidic chip at the Fraunhofer Institute for Electronic Nano Systems ENAS. The OLET, meanwhile, is being developed by CNR-ISMN in Bologna, and the photonic grating by the company Plasmore Srl in Pavia, both in Italy. Coordinator of the project is CNR-ISMN.´

“The unique thing about our chip is that it can be reused,” explains Andreas Morschhauser, researcher at Fraunhofer ENAS. “The target molecules are stripped from the immobilized antibodies by a regenerating buffer. This means that the antibodies can be reused for further tests.”

In fact, the estimated life of the chip is 100 test cycles. In each test, a total of six parameters relating to contaminants and proteins are measured. For this purpose, Morschhauser and his colleagues have developed a microfluidic system in the form of an automated, miniaturized cartridge that is replaceable.

In addition to supplying information on milk safety and quality, the measured parameters also tell farmers about the health and condition of each cow. This helps them to spot infections at an early stage and begin treatment immediately. Timely treatment can lead to a more judicious administration of antibiotics and therefore to a reduction in their use.

A nanostructured grating for surface plasmon resonance

But how does the test work? Dr. Michael Törker, a researcher at Fraunhofer FEP, explains: “Light emitted by the transistor falls onto a grating coated with antibodies specific to the various substances being tested for. When milk is flushed over the grating, any target molecules in the milk then bond with the antibodies. This alters the refractive index in the immediate vicinity of the grating, which in turn modifies how this light is reflected. The reflected light is registered by the photodetector, which measures minimal changes in the refractive index.”

This basic phenomenon, which occurs on specially structured nanogratings, is known as surface plasmon resonance. It provides rapid and highly sensitive readings.

The aim is to use this biosensor at various points along the value chain – both as a lab device and directly installed in dairy equipment. Moreover, it will also be suitable for testing the quality of liquids other than milk, such as beer or water. The only adjustment required is a modification to the immobilized capture molecules and to the requisite reaction buffer. This would merely involve replacing the capture molecules with ones suitably modified for the purpose in question.

Initial results from the development of the optoplasmonic chip will be on show at CES 2020 in Las Vegas on January 7–10, 2020
(Sands Expo Center, OE-A booth, no. 40950).


Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/8EX

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Information Technology:

nachricht Quantum computers in Innsbruck support Qiskit as quantum software tool
05.11.2019 | Universität Innsbruck

nachricht Research on AI-based Tumour Diagnostics
05.11.2019 | FZI Forschungszentrum Informatik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

Im Focus: Structured light promises path to faster, more secure communications

Quantum mechanics is embracing patterns of light to create an alphabet that can be leveraged to build a light-based quantum network

Structured light is a fancy way to describe patterns or pictures of light, but deservedly so as it promises future communications that will be both faster and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Rapid test to ensure high milk quality

05.11.2019 | Information Technology

How cells stick together tightly

05.11.2019 | Life Sciences

Is the Baltic Sea at a crossroads?

05.11.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>