Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid test to ensure high milk quality

05.11.2019

Standards of food safety and food quality have never been higher in Germany and throughout the European Union. This is especially true in the dairy industry. Yet despite such high standards, traces of impurities, pesticides and antibiotics can find their way into milk, with sometimes serious consequences for consumer health. In the EU-funded project MOLOKO, Fraunhofer researchers have teamed up with partners to develop a new optoplasmonic sensor designed to provide fast, on-site analysis of safety and quality parameters for milk. This early-warning system will bring the industry substantial savings in time and money as well as a drastic reduction in wasted product.

Food safety is a critical factor in the food industry, not least in the dairy sector. Here, udder infections can lead to harmful organisms entering the milk, and chemical substances such as antibiotics or pesticides can contaminate the product via fodder or as a result of inadequate control of equipment and storage facilities.


Chip with integrated light source and light detector for analyzing contaminants in milk

© Fraunhofer FEP, Picture in printable resolution: www.fep.fraunhofer.de/press

In order to prevent adulterated milk entering the food chain, checks are conducted throughout the entire production process and supply chain. Yet these standard tests are expensive and time consuming. Samples are taken from milk tankers containing a mixture of product collected from any number of dairy farms and then analyzed in the lab.

If the milk proves to be contaminated, the entire load must be destroyed, with high losses for all of the farmers and dairies concerned. If there were a test with which farmers could check their own milk before it is collected by the tanker, such wastage could be avoided.

Quality check delivers results in five minutes

In the project MOLOKO (Multiplex phOtonic sensor for pLasmonic-based Online detection of contaminants in milK), 12 partners from seven countries – including one dairy – have devised a fast and inexpensive test for identifying quality factors in milk.

In a test lasting around five minutes, a new optoplasmonic sensor analyzes the product for a total of six substances, thereby providing a supplementary check and an early- warning system within the supply chain, well before the milk is pumped into the tanker. The sensor is functionalized with receptors for specific antibodies that serve as indicators of various quality and safety parameters for milk. It thereby allows dairy farms to carry out automated, on-site quantitative analyses.

Unique integrated sensor architecture

The entire system consists of a reusable microfluidic chip, organic light-emitting transistors (OLETs) or diodes (OLEDs), a sensor comprising organic photodetectors (OPDs), a nanostructured plasmonic grating and the specific antibodies.

The organic photodetector is undergoing development at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, and the microfluidic chip at the Fraunhofer Institute for Electronic Nano Systems ENAS. The OLET, meanwhile, is being developed by CNR-ISMN in Bologna, and the photonic grating by the company Plasmore Srl in Pavia, both in Italy. Coordinator of the project is CNR-ISMN.´

“The unique thing about our chip is that it can be reused,” explains Andreas Morschhauser, researcher at Fraunhofer ENAS. “The target molecules are stripped from the immobilized antibodies by a regenerating buffer. This means that the antibodies can be reused for further tests.”

In fact, the estimated life of the chip is 100 test cycles. In each test, a total of six parameters relating to contaminants and proteins are measured. For this purpose, Morschhauser and his colleagues have developed a microfluidic system in the form of an automated, miniaturized cartridge that is replaceable.

In addition to supplying information on milk safety and quality, the measured parameters also tell farmers about the health and condition of each cow. This helps them to spot infections at an early stage and begin treatment immediately. Timely treatment can lead to a more judicious administration of antibiotics and therefore to a reduction in their use.

A nanostructured grating for surface plasmon resonance

But how does the test work? Dr. Michael Törker, a researcher at Fraunhofer FEP, explains: “Light emitted by the transistor falls onto a grating coated with antibodies specific to the various substances being tested for. When milk is flushed over the grating, any target molecules in the milk then bond with the antibodies. This alters the refractive index in the immediate vicinity of the grating, which in turn modifies how this light is reflected. The reflected light is registered by the photodetector, which measures minimal changes in the refractive index.”

This basic phenomenon, which occurs on specially structured nanogratings, is known as surface plasmon resonance. It provides rapid and highly sensitive readings.

The aim is to use this biosensor at various points along the value chain – both as a lab device and directly installed in dairy equipment. Moreover, it will also be suitable for testing the quality of liquids other than milk, such as beer or water. The only adjustment required is a modification to the immobilized capture molecules and to the requisite reaction buffer. This would merely involve replacing the capture molecules with ones suitably modified for the purpose in question.

Initial results from the development of the optoplasmonic chip will be on show at CES 2020 in Las Vegas on January 7–10, 2020
(Sands Expo Center, OE-A booth, no. 40950).


Press contact:

Ms. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Phone +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/8EX

Franziska Lehmann | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Researchers discover a new way in which insulin interacts with its receptor

18.11.2019 | Life Sciences

Bacterial protein impairs important cellular processes

18.11.2019 | Life Sciences

A better understanding of soft artificial muscles

18.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>