Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computing on the move

06.11.2017

The work by Kaufmann and coworkers appeared in the high rank international journal Physical Review Letters 119, 150503.

A future quantum computer, using “quantum bits” or qubits, might be able to solve problems which are not tractable for classical computers. Scientists are currently struggling to build devices with more than a few qubits, with the challenge arising that the qubits mutually hamper each other’s proper operation.


Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap.

photo/©: QUANTUM / Thomas Ruster

Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap. The ion qubits can be freely positioned within the trap, such that laser-driven quantum operations at high accuracy remain possible.

The team has realized the generation of an entangled state of the four qubits, where each of the qubits loses its individual identity, but the register as a whole does have a well-defined state. This has been accomplished by sequential operations on pairs of qubits, interleaved with ion movement operations. The resulting quantum state is carried by qubits which are distributed across macroscopic scales of up to several millimeters.

The approach for realizing a quantum computer based on moving ions in a micro-structured trap has originally been proposed by a team around physics nobel laureate David J. Wineland and has been coined “quantum CCD” for the analogy with the controlled movement of charges in the devices underlying modern cameras.

The work by Kaufmann and coworkers appeared in the high rank international journal Physical Review Letters 119, 150503 and marks a decisive milestone for bringing this idea for scaling up quantum computers into the realm of feasibility.

Image:
http://www.uni-mainz.de/downloads_presse/08_physik_quantum_quantencomputer.pdf
Researchers led by Professor Ferdinand Schmidt-Kaler und Dr. Ulrich Poschinger at Johannes Gutenberg University Mainz (JGU) in Germany have now demonstrated the operation of a four-qubit register comprised of atomic ions trapped in microchip trap.
photo/©: QUANTUM / Thomas Ruster

Publication:
Kaufmann et al.
Scalable Creation of Long-Lived Multipartite Entanglement
Physical Review Letters 119, 13 October 2017
https://doi.org/10.1103/PhysRevLett.119.150503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.150503

Contact and further information:

Prof. Dr. Ferdinand Schmidt-Kaler
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39- 26234
fax +49 6131 39-25179
e-mail: fsk@uni-mainz.de

Dr. Ulrich Poschinger
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25954
fax +49 6131 39-25179
e-mail: poschin@uni-mainz.de

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Atomic Neutron QUANTUM ions quantum bits quantum computer quantum state

More articles from Information Technology:

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

nachricht Largest, fastest array of microscopic 'traffic cops' for optical communications
12.04.2019 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>