Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computer components 'coalesce' to 'converse'

27.10.2011
If quantum computers are ever to be realized, they likely will be made of different types of parts that will need to share information with one another, just like the memory and logic circuits in today's computers do.

However, prospects for achieving this kind of communication seemed distant—until now. A team of physicists working at the National Institute of Standards and Technology (NIST) has shown* for the first time how these parts might communicate effectively.


[1] A single photon is produced by a quantum dot (QD). Simultaneously, a pair of photons is produced by a parametric down-conversion crystal (PDC). [2] One of the PDC photons -- which has different characteristics than the QD photon -- is routed into a cavity and filter, [3] rendering this PDC photon and the QD photon nearly identical. Credit: Suplee, NIST

The goal to develop quantum computers—a long-awaited type of computer that could solve otherwise intractable problems, such as breaking complex encryption codes—has inspired scientists the world over to invent new devices that could become the brains and memory of these machines. Many of these tiny devices use particles of light, or photons, to carry the bits of information that a quantum computer will use.

But while each of these pieces of hardware can do some jobs well, none are likely to accomplish all of the functions necessary to build a quantum computer. This implies that several different types of quantum devices will need to work together for the computer or network to function. The trouble is that these tiny devices frequently create photons of such different character that they cannot transfer the quantum bits of information between one another. Transmuting two vastly different photons into two similar ones would be a first step toward permitting quantum information components to communicate with one another over large distances, but until now this goal has remained elusive.

However, the team has demonstrated that it is possible to take photons from two disparate sources and render these particles partially indistinguishable. That photons can be made to "coalesce" and become indistinguishable without losing their essential quantum properties suggests in principle that they can connect various types of hardware devices into a single quantum information network. The team's achievement also demonstrates for the first time that a "hybrid" quantum computer might be assembled from different hardware types.

The team connected single photons from a "quantum dot," which could be useful in logic circuits, with a second single-photon source that uses "parametric down conversion," which might be used to connect different parts of the computer. These two sources typically produce photons that differ so dramatically in spectrum that they would be unusable in a quantum network. But with a deft choice of filters and other devices that alter the photons' spectral shapes and other properties, the team was able to make the photons virtually identical.

"We manipulate the photons to be as indistinguishable as possible in terms of spectra, location and polarization—the details you need to describe a photon. We attribute the remaining distinguishability to properties of the quantum dot," says Glenn Solomon, of NIST's Quantum Measurement Division. "No conceivable measurement can tell indistinguishable photons apart. The results prove in principle that a hybrid quantum network is possible and can be scaled up for use in a quantum network."

The research team includes scientists from the NIST/University of Maryland Joint Quantum Institute (JQI) and Georgetown University. The NSF Physics Frontier Center at JQI provided partial funding

*S.V. Polyakov, A. Muller, E.B. Flagg, A. Ling, N. Borjemscaia, E. Van Keuren, A. Migdall and G.S. Solomon. Coalescence of single photons from dissimilar single-photon sources. Physical Review Letters, 107, 157402 (2011), DOI: 10.1103/PhysRevLett.107.157402.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>