Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project CoPDA: DFKI Laboratory Niedersachsen teaches dynamic knowledge to robots for a better human-machine interaction

06.02.2020

People generally know which objects they call theirs and which they do not. For machines, however, changing functions of objects present an unresolved problem: A laboratory robot does not know which tool currently belongs to which worker. For the first time, the three research areas of the DFKI Laboratory Niedersachsen work together on a solution for this problem in form of dynamic anchoring – and test the new software on robot arms and sailing boats. The aim is an open source module that fundamentally improves the human-machine interaction. The Federal Ministry for Education and Research (BMBF) funds the project CoPDA with roughly 1.3 million Euros.

It happens in every office on any given day: As soon as a worker takes a mug from a cupboard, it becomes his or hers for the rest of the shift. While her colleagues are able to automatically register and consider this fact, the functional attribute of the mug presents a complex problem for a machine:


Robot Tiago gives a mug to a scientist at a kitchen of the DFKI in Osnabrueck.

DFKI GmbH, Photo: Annemarie Popp

A service robot in a laboratory or in a household has difficulties distinguishing many similar looking objects based on their current function. To whom something belongs at the moment, what it is used for and when this attribute does not apply anymore – all this information cannot be deduced by the machine itself.

In order to do so, it requires a so-called dynamic anchor, which connects each mug with a current function: by whom it is used and when the usage ends. The perception of such (partially temporal) object identities is one of the keys to human-machine interaction – whether in laboratories, factories or households.

For this reason, the three research areas of the DFKI Laboratory Niedersachsen are working on a fundamental solution for the “comprehensive perception and dynamic anchoring” of such identities in the project CoPDA, which started on 1 January 2020.

Fundamental solution in form of open source software for all areas of robotics

The aim of the project is a dynamic anchoring agent (DAA). This agent can be implemented in different robotic systems and creates a temporary connection between recognized objects and its prior knowledge about their characteristics and operating area.

Part of the project is finding a definition for how these connections are created and later resolved again. The question here is whether a machine requires a human to let it know to whom an object belongs and for how long, or if it can recognize this by itself – for example via visual signals or its location.

According to the plan of the DFKI Laboratory Niedersachsen, sufficient information on the mug and the possible change of its location and appearance could allow the dynamic anchoring agent to set an anchor by itself and thus enable a robot to automatically bring the correct mug to the correct worker - or the correct family member. Because dynamic anchoring presents one of the basic problems that affect all future areas in which robots and humans work together.

For this reason, the scientists are working on a fundamental solution that will be tested extensively and implemented in partner projects of other DFKI research areas. The dynamic anchoring agent will eventually be made available as an open source software for robots and thus contribute to a comprehensive improvement of human-machine interaction.

Tests with robot arms and sailing boats

Before that, it is vital to test the dynamic anchoring in possible areas of implementation. In the first test, a robot arm will register which worker is currently using which tool. The difficult part is the change of location of the tool: the DAA has to recognize the affiliation of a screwdriver even if it is put to a different place without the sensors tracing it.

In the second experiment, the agent is put to test in a less controllable environment: A yacht harbour is used to find out how anchors can be set and kept up in large areas with permanent changes. The experiment serves to make the agent applicable in logistical areas such as parking lots or warehouses.

In the first joint project of the DFKI Laboratory Niedersachsen, which was founded in 2019, the three research areas in Osnabrueck and Oldenburg complement each other with their respective expertise.

This includes the processing of sensor data of the area of Plan-Based Robot Control (PBR) as well as the implementation of gadgets for the human-machine interaction of the area of Smart Enterprise Engineering (SEE) and the environmental perception and modelling in maritime environments (amongst others) of the area of Marine Perception (MAP). The project CoPDA is funded by the Federal Ministry for Education and Research (BMBF) over a period of three years with roughly 1.3 million Euros.

Photo material:
A press photo is available for download in the DFKI cloud at https://cloud.dfki.de/owncloud/index.php/s/B2aFm5EzfT5AZa4. You may use this photo stating the source “DFKI GmbH, Photo: Annemarie Popp”.

Contact:
Prof. Dr. Joachim Hertzberg
German Research Center for Artificial Intelligence
Plan-Based Robot Control
Phone: +49 541 386050 2251
Mail: Joachim.Hertzberg@dfki.de

Press contact:
German Research Center for Artificial Intelligence
Team Corporate Communications Lower Saxony
Phone: +49 421 178 45 4180
Mail: uk-ni@dfki.de

Jens Peter Kückens DFKI Bremen | idw - Informationsdienst Wissenschaft
Further information:
http://www.dfki.de

More articles from Information Technology:

nachricht Researchers report progress on molecular data storage system
05.02.2020 | Brown University

nachricht New coronavirus module in SORMAS
05.02.2020 | Helmholtz-Zentrum für Infektionsforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

Im Focus: Fast rotating white dwarf drags its space-time in a cosmic dance

According to Einstein's general relativity, the rotation of a massive object produces a dragging of space-time in its vicinity. This effect has been measured, in the case of the Earth’s rotation, with satellite experiments. With the help of a radio pulsar, an international team of scientists (with important contributions from scientists at the Max Planck Institute for Radio Astronomy in Bonn, Germany) were able to detect the swirling of the space-time around its fast-rotating white dwarf-companion star, and thus confirm the theory behind the formation of this unique binary star system.

In 1999, a unique binary system was discovered with the Australian Parkes Radio Telescope in the constellation Musca (the Fly), close to the famous Southern...

Im Focus: Quantum logic spectroscopy unlocks potential of highly charged ions

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar¹³⁺ ion from an extremely hot plasma and brought it practically to rest inside an ion trap together with a laser-cooled, singly charged ion. Employing quantum logic spectroscopy on the ion pair, they have increased the relative precision by a factor of a hundred million over previous methods. This opens up the multitude of highly charged ions for novel atomic clocks and further avenues in the search for new physics. [Nature, 29.01.2020]

Highly charged ions are—although seemingly exotic—a very natural form of visible matter. All the matter in our sun and in all other stars is highly ionized,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A bumble bee’s diet affects survival and reproductive capabilities

05.02.2020 | Life Sciences

The invisibility cloak of a fungus

05.02.2020 | Life Sciences

Artificial intelligence 'sees' quantum advantages

05.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>