Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project Uses Cell Phones as Computers in the Classroom

10.02.2009
Educational software for cell phones, a suite of tools developed at the University of Michigan, is being used to turn smart phones into personal computers for students in two Texas classrooms.

Their Mobile Learning Environment includes programs that let students map concepts, animate their drawings, surf relevant parts of the Internet and integrate their lessons and assignments.

It also includes mini versions of Microsoft Word and Excel. It is currently licensed through Soloway's company GoKnow! to 40,000 users around the world for larger palm-sized computers. Cell phones change the game, though.

The software developers are Elliot Soloway, an Arthur F. Thurnau Professor in the department of Electrical Engineering and Computer Science, the School of Information, and the School of Education, and Cathleen Norris, a regents professor at the University of North Texas.

"This is the beginning of the future," Soloway said. "The future is mobile devices that are connected. They're going to be the new paper and pencil."

Cell phones can be powerful computers, Soloway says. They can do just about everything laptops can do for a fraction of the price. And many students are bringing them to school anyway.

Matt Cook, a fifth-grade teacher from Keller, Texas who started the pilot project, says the popularity of cell phones got him thinking about how to harness their power for teaching. About half of the students in his class had phones before the project started.

Cook was looking for an answer when he met Soloway at an education technology conference last year. He got Verizon Wireless involved to donate phone service. HTC Corp. is donating smart phones. Celio Corp. is donating screens for the phones. Microsoft is providing training.

The project equips 53 students in two fifth-grade classes at Trinity Meadows Intermediate School with a smart phone of their own to use around-the-clock for the rest of the school year. Students can't text message or make calls with them. But they can use the cameras, mp3 players, calendars, calculators and educational software. Cook handed out the phones in late January.

"The phones will be seamlessly integrated into my lessons," Cook said. "I think that right off the bat, this will add a level of student engagement. They'll be more interested in the lessons because we're talking in the students' language. Any time you can do that, you're a lot more likely to be heard."

He explained how the devices will change his lesson on physical and chemical weathering. He will take the students outside with sidewalk chalk and let them decorate the concrete. Normally, they would then go outside every day to watch the chalk fade over time. Now, students will take a photos of the sidewalk every day and use the Sketchy animation program to create a video of the fading process.

Soloway says this type of hands-on, reinforced learning is only possible when each student has his or her own device.

"People ask why every child needs a computer and why can't students just share," Soloway said. "Well, do you share pencils?"

The school district is examining several aspects of student learning with these devices. They'll determine whether listening to recordings of texts enhances at-risk students' reading comprehension. They are studying students' technological savvy before and after the project. The teachers involved will also teach responsible and appropriate use of these phones. Cook and school officials hope to expand the project next year.

For more information on Soloway, visit: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=861

Cell-phone-based, hand-held computers for education at Keller Intermediate School District: http://www.kellerisd.net/kellerisd/index.php?option=com_content&task=view&id=600&Itemid=921

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.engin.umich.edu

More articles from Information Technology:

nachricht 5G-ready: Interoperability of the Fraunhofer FOKUS software-based core network successfully tested
15.02.2019 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

nachricht New RMU project in the field of artificial intelligence and deep learning
13.02.2019 | Johannes Gutenberg-Universität Mainz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>