Plucked from thin air: New musical glove brings a whole new meaning to playing the computer

The technology behind this astonishing feat is a novel musical glove that transmits signals to a computer when the fingers of the glove are moved. But the glove can do more than just recreate guitar and piano sounds. The sensitive control system could find future use in robots and computer games. Scientists from Saarland University will be showcasing their invention at Hannover Industrial Trade Fair from 19-23 April (Hall 2, Stand C 44).

The musical glove is fitted with magnetic and acceleration sensors and is able to measure the motion of the hand and the individual fingers. “We don't just record where a particular finger is at any one moment and how it is bent, we can also continuously measure the position of the entire hand”, says Esther Tesfagiorgis, part of the team of mechatronics students at Saarland University that developed the musical glove.

A computer program then translates the motions of the hand into musical notes. So far the glove has been programmed to simulate guitar and piano sounds. The orientation of the left hand determines which of the instruments is to be simulated. If the left hand moves horizontally, palm downward, the glove simulates a piano, if the left hand is rotated through 180° to leave the palm uppermost, the glove switches into guitar mode.

“But the sensitivity of the control system means that there are many of other potential applications. For instance, the system could be used to record sign language or to manually control computer games or robots,” explains Esther Tesfagiorgis, whose team has filed an application to patent the invention. The sensor-controlled glove could also be used for the kind of delicate hand movements required in surgical operations. The glove is fitted with an acceleration sensor on one side of the hand and with permanent magnets on the palm of the hand that generate a magnetic field. So-called magnetoresistive sensors are located on one side of the first section of each finger. “When the hand moves, the magnetic field changes. This change in the magnetic field is registered by the sensors and transformed into an electric voltage. These voltages are then recorded by a device and processed in the computer as a signal,” explains Tesfagiorgis.

The team of four mechatronic students from Saarbrücken entered their invention for the nationwide Cosima competition (Contest of Students in Microsystem Applications) at last year's Microsystems Technology Congress in Berlin and won first prize. Winning the Cosima contest automatically qualified the group for the international student competition i-Can that was held in January 2010 in Xiamen, China, where competing against 17 other student groups from six countries, the Saarbrücken team once again came out on top.

Questions can be addressed to:

Prof. Dr. Hartmut Seidel
Lehrstuhl für Mikromechanik
Universität des Saarlandes
Phone: +49 (0)681 302-4416
E-mail: seidel@lmm.uni-saarland.de
Esther Tesfagiorgis
Tel. +49 (0)511 8949-7101 (during trade fair)
Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using ISDN codec technology. Interview requests should be addressed to the university's Press and Public Relations Office (+49 (0)681 302-3610).

Media Contact

Friederike Meyer zu Tittingdorf idw

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors