Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plucked from thin air: New musical glove brings a whole new meaning to playing the computer

14.04.2010
Nimble fingers glide over invisible strings while the sound of a guitar blasts from the speakers. It might look like just another air guitar routine, but here the sounds really do seem to have been plucked from thin air.

The technology behind this astonishing feat is a novel musical glove that transmits signals to a computer when the fingers of the glove are moved. But the glove can do more than just recreate guitar and piano sounds. The sensitive control system could find future use in robots and computer games. Scientists from Saarland University will be showcasing their invention at Hannover Industrial Trade Fair from 19-23 April (Hall 2, Stand C 44).

The musical glove is fitted with magnetic and acceleration sensors and is able to measure the motion of the hand and the individual fingers. "We don't just record where a particular finger is at any one moment and how it is bent, we can also continuously measure the position of the entire hand", says Esther Tesfagiorgis, part of the team of mechatronics students at Saarland University that developed the musical glove.

A computer program then translates the motions of the hand into musical notes. So far the glove has been programmed to simulate guitar and piano sounds. The orientation of the left hand determines which of the instruments is to be simulated. If the left hand moves horizontally, palm downward, the glove simulates a piano, if the left hand is rotated through 180° to leave the palm uppermost, the glove switches into guitar mode.

"But the sensitivity of the control system means that there are many of other potential applications. For instance, the system could be used to record sign language or to manually control computer games or robots," explains Esther Tesfagiorgis, whose team has filed an application to patent the invention. The sensor-controlled glove could also be used for the kind of delicate hand movements required in surgical operations. The glove is fitted with an acceleration sensor on one side of the hand and with permanent magnets on the palm of the hand that generate a magnetic field. So-called magnetoresistive sensors are located on one side of the first section of each finger. "When the hand moves, the magnetic field changes. This change in the magnetic field is registered by the sensors and transformed into an electric voltage. These voltages are then recorded by a device and processed in the computer as a signal," explains Tesfagiorgis.

The team of four mechatronic students from Saarbrücken entered their invention for the nationwide Cosima competition (Contest of Students in Microsystem Applications) at last year's Microsystems Technology Congress in Berlin and won first prize. Winning the Cosima contest automatically qualified the group for the international student competition i-Can that was held in January 2010 in Xiamen, China, where competing against 17 other student groups from six countries, the Saarbrücken team once again came out on top.

Questions can be addressed to:

Prof. Dr. Hartmut Seidel
Lehrstuhl für Mikromechanik
Universität des Saarlandes
Phone: +49 (0)681 302-4416
E-mail: seidel@lmm.uni-saarland.de
Esther Tesfagiorgis
Tel. +49 (0)511 8949-7101 (during trade fair)
Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using ISDN codec technology. Interview requests should be addressed to the university's Press and Public Relations Office (+49 (0)681 302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.lmm.uni-saarland.de
http://www.uni-saarland.de/pressefotos

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>