Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Playfully discover atom manipulation

09.07.2019

Online simulation game makes graphene research available to the public

The team of Toma Susi at the University of Vienna uses a state-of-the-art electron microscope, the UltraSTEM, to manipulate strongly bound materials with atomic precision.


An electron beam focused on a carbon atom next to a silicon impurity atom within the curved wall of a single-walled carbon nanotube can controllably make it jump to where the beam was placed.

Credit: © Toma Susi/University of Vienna


A screenshot of the instructions of the Atom Tractor Beam simulation game.

Credit: © Toma Susi/University of Vienna

Since the instruments used are fully computerized, it is possible to show in a simulation how researchers actually use them. This allows for compelling and largely realistic presentations of the most recent research in materials science.

A simulation game on display at the Vienna Technical Museum in their special exhibition "Work & Production; thinking_forward_" is now also released online, together with the latest research advance of silicon impurity manipulation in single-walled carbon nanotubes.

Electron microscopes enable much greater resolution than optical microscopes. While optical microscopes image using visible light and thus can image objects down to a thousandth of a millimeter, electron microscopes use electron beams and can image much smaller objects, down to individual atoms, such as silicon impurities in the lattice of graphene.

The Nion UltraSTEM scanning transmission electron microscope of the University of Vienna allows a 50,000,000x magnification, and is fully computer-controlled.

Since image contrast depends on how much the electrons are scattered at each location - which in turn is determined by the charge of the nucleus, with silicon having more protons than carbon - we can directly see the where the impurities are located.

In addition to imaging, the focused electron beam of the microscope can be used to move the atoms. Each electron of this beam has a small chance of being scattered back by the nucleus of this targeted atom, giving the atom a small push in the opposite direction, as revealed by earlier research by the group.

The electron beam scans across a graphene sample line by line, revealing the locations of the carbon atoms that make up the lattice, as well as the brighter silicon impurities. In practice, the electron beam is directed by moving a mouse cursor on a computer screen, which controls the microscope electronics.

"So, in effect, we are playing a computer game in order to do our research", Susi explains. He continues. "I used to play many games when I was younger, and I notice that I am faster than some of my younger colleagues who are more used to touch screens!"

The simulation game has been part of the special exhibition "Work & Production; thinking_forward_" at the Vienna Technical Museum that opened last November, and also features typical samples used for the research as well as information on the underlying physics.

Now, to reach an even larger audience, the team is launching a website with the same content, including a browser-based version of the simulation game called "Atom Tractor Beam". The name is inspired by the science fiction concept of an attractive beam of energy popularized by Star Trek.

"The name is appropriate since the silicon impurities move to the location where the cursor is pointed, as if attracted by the electron beam", Susi concludes.

Concurrently with the launch of the website, the team has reported their latest research advance in atom manipulation in an article published by Advanced Functional Materials. In this work, the team demonstrates that silicon impurities, which have thus far been studied in graphene, can also be controllably manipulated in a new material, namely single-walled carbon nanotubes. Since these are confined one-dimensional structures, this advance may enable new kinds of tunable electronic devices.

###

The science communication project was supported by the Vienna Business Agency. Main funding for the research came from the European Research Council (ERC) and the Austrian Science Fund (FWF).

Website:

Atom Tractor Beam (Toma Susi / University of Vienna)

https://www.univie.ac.at/tractorbeam

Special exhibition "Work & Production; thinking_forward_" at the Vienna Technical Museum

https://www.technischesmuseum.at/exhibition/work-and-production

Publication:

Electron-Beam Manipulation of Silicon Impurities in Single-Walled Carbon Nanotubes: Kimmo Mustonen, Alexander Markevich, Mukesh Tripathi, Heena Inani, Er-Xiong Ding, Aqeel Hussain, Clemens Mangler, Esko I. Kauppinen, Jani Kotakoski, and Toma Susi. Advanced Functional Materials (online), DOI: 10.1002/adfm.201901327.

Media Contact

Toma Susi
toma.susi@univie.ac.at
43-142-777-2855

 @univienna

http://www.univie.ac.at/en/ 

Toma Susi | EurekAlert!
Further information:
https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/atom-manipulationen-spielerisch-entdecken/
http://dx.doi.org/10.1002/adfm.201901327

More articles from Information Technology:

nachricht Foundations Laid for Building-Scale GPS Technology
20.01.2020 | Technische Universität Chemnitz

nachricht Man versus machine: Can AI do science?
14.01.2020 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>