Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017

The research project PhoxTroT (Photonics for High-Performance, Low-Cost & Low-Energy Data Centers, High Performance Computing Systems: Terabit/s Optical Interconnect Technologies for On-Board, Board-to-Board, Rack-to-Rack data links) completed successfully its activities delivering the revolutionary optical interconnect solutions towards High-Performance, Low-Cost & Low-Energy Data Centers, High Performance Computing Systems exploiting existing photonic technologies in a holistic way, synergizing the different fabrication platforms in order to deploy the optimal “mix&match” technology and tailor this to each interconnect layer.

To ensure a constant availability of the Internet applications of service providers like Google, Apple, Facebook or Amazon in all areas independently if they are intended for end users or companies of all sizes, data centers of gigantic dimensions are needed. The energy consumption of such data centers is, of course, exorbitant - and precisely at this point, the now successfully completed EU project "PhoxTroT" saw enormous potential for cost reduction and efficiency.


PhoxTroT: Photonics for High-Performance

PhoxTroT consortium

During a period of 56 months, under the coordination of the Fraunhofer Institute for Reliability and Microintegration, IZM, a consortium with 23 project partners focused on this topic: 50% less energy consumption with a doubling of the data communication rate to two terabits per second was the main goal.

This was achieved by the implementation of optical interconnections at all hierarchy levels: On-Board, Board-to-Board, Rack-to-Rack data links. The overall research and development budget of the project was about 13 Million € with 8.7 Million € EU contribution, which allowed an effort of more than 1050 person-months for the duration of the project.

... more about:
»Data Centers »IEC »IZM »Optical »PIC »Photonics »SEA »circuit boards

In May 2017 the project was successfully finalized, bringing breakthrough developments of the PhoxTroT consortium as a whole. The main achievements include the development of data storage systems and subsystems supporting full optical interconnect migration down to end nodes (SEA) for linearly scalable, power and cost reduced data centres, the implementation of a Silicon Photonics process flow in the 200mm fabrication site of ams (AMS), the establishment of multilayer, multimode electro-optical circuit board global platform for high volume fabrication (MAIL) and the establishment of a fabrication pilot line for single-mode electro-optical circuit boards (Fraunhofer IZM) to couple seamlessly to singlemode fibre infrastructures deployed in future exascale data centres and to support integrated silicon photonics applications, the advanced optical design and simulation packages and data centre design architectures and protocols (PHX, AUTH, ICCS, CTI), PIC and hybrid design flow optimization (BP, Fraunhofer IZM), the long wavelength VCSEL and photodiode arrays and their driving/receiving electronics deployment to address emerging singlemode parallel optical transceiver markets (VTL, Fraunhofer HHI, IMEC), the advanced active optical cable development (TE, MLNX, KIT, AMO), 3D silicon photonics switches, transceivers and their advanced 3D assembly (DAS, Fraunhofer IZM, UPVLC, AMO, AUTH) and a full suite of electro-optical circuit board multimode and singlemode waveguide couplers and board-to-board connectors (SEA, Fraunhofer IZM, CEOS and MAIL), the development of flexible, low-loss “Plasmonic Arcs”(CNRS-UB, SDU, Fraunhofer IZM), the development of first hybrid InP-on-SOI nano laser diode (CNRS-LPN).

PhoxTroT brought strong influence on international standards relevant to its core technology areas of chip level interconnect (photonic integrated circuits), board level interconnect (optical circuit boards) and rack level interconnect (AOCs) as well as data centre and HPC architectures. As well as participating in and contributing to a wide range of standardisation committees spanning the PhoxTroT technology fields, PhoxTroT has successfully supported efforts to found a Photonic Integrated Circuit (PIC) working group within the IEC and generated a standardisation roadmap on PIC technologies, “IEC 63072-1 – Photonic Integrated Circuits –

Part 1: Introduction and roadmap for standardization”, which was published by the IEC in May 2017. Furthermore it has created and validated a measurement methodology for optical circuit boards, and created a corresponding international standard, IEC 62496-2/Ed1: General guidance for definition of measurement conditions for optical characteristics of optical circuit boards”, which was published by the IEC in May 2017.

A proactive Intellectual Property Rights management strategy has been successfully deployed resulting in PhoxTroT foreground innovations being captured in 16 patent filings so far, 7 of which have already been granted.Regarding the dissemination of PhoxTroT foreground knowledge to the scientific community, during the lifetime of the project have been generated more than 100 publications to peer-reviewed journals and more than 100 “other dissemination actions” that include invited talks to prestigious conferences in photonics, workshop presentations etc. Moreover PhoxTroT has organized 5 successful Symposia in Optical Interconnects as well as 2 Summer Schools with more than 150 attendees to each event.

In order to exploit the project main results and technologies a new follow up initiative is now available to small and medium-sized enterprises for further development: "PhoxLab" for deep characterization of system embedded photonic interconnect and validation in data centre environment developed into an ‘European Digital Innovation Hub’ at the Fraunhofer IZM in Berlin.

Following up on "PhoxTroT", the results and applications of further national and European research projects will be provided to start-ups and SMEs - for example, to carry out tests for the certification of their prototypes and developments. Fraunhofer IZM as operator and initiator sees itself as an independent platform for application areas in the field of photonics and data centers of all kinds - and thus lays the foundations for the future of the infrastructure of modern Internet applications.

PhoxTroT consortium partners:
• Fraunhofer Institute for Reliability and Microintegration, Germany (Fraunhofer IZM)
• Fraunhofer Institute for Telecommunications Heinrich-Hertz-Institut, Germany
(Fraunhofer HHI)
• Vertilas GmbH, Germany (VTL)
• Seagate Systems UK Limited, United Kingdom (SEA)
• ams AG, Austria (AMS)
• Meadville Aspocomp International Limited, Hong Kong (MAIL)
• Gesellschaft für Angewandte Mikro und Optoelektronik mit beschränkter Haftung
mbH, Germany (AMO)
• National Technical University of Athens, Institute of Communication and Computer
Systems, Greece (ICCS)
• DAS Photonics SL, Spain (DAS)
• Phoenix BV, Netherlands (PHX)
• The Centre for Research & Technology Hellas, Greece (CERTH/ITI)
• Compas Electro-Optical Systems, Israel (CEOS)
• Bright Photonics BV, Netherlands (BP)
• Computer Technology Institute and Press – “Diophantus”, Greece (CTI)
• Centre National de la Recherche Scientifique Laboratoire Interdisciplinaire Carnot de
Bourgogne, France (CNRS-UB)
• Centre National de la Recherche Scientifique Laboratoire de photonique et de
nanostructures, France (CNRS-LPN)
• Karlsruhe Institute of Technology, Germany (KIT)
• Syddansk Universitet, Denmark (SDU)
• Universitat Politecnica de Valencia, Spain (UPVLC)
• Interuniversitair Micro-Elektronica Centrum vzw, Belgium (IMEC)
• TE Connectivity Nederland BV, Netherlands (TE)
• Aristotelio Panepistimio Thessalonikis, Greece (AUTH)
• Mellanox Technologies LTD, Israel (MLNX)

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 318240.

Weitere Informationen:

http://www.phoxtrot.eu More information about the project goals and highlights can be found on its website

Eva Baumgärtner | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

Further reports about: Data Centers IEC IZM Optical PIC Photonics SEA circuit boards

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>