Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passenger-focused air conditioning

14.04.2015

Hannover Messe: Visio.M presents efficient air conditioning for electric cars

How can a pleasant vehicle climate be achieved efficiently? Researchers at the Technische Universität München (TUM) pursued this question in the context of the research project Visio.M funded by the German Federal Ministry for Education and Research (BMBF) with a total of 7.1 million euro.


Visio.M's air-conditioning system achieves maximum efficiency not only through focused temperature control of the space in direct proximity to the passenger, but also by integrating motor and performance electronics into a holistic thermal management system.

Credit: Alexander Präbst / TU München

The results of their research show that the potential of energy efficient air conditioning is all but exhausted. And this applies also to gasoline powered cars.

Inefficiency has its advantages, too: In the past, waste heat from combustion engines could be used to heat vehicle passenger compartments directly. In warm weather air conditioning provided comfort. But efficient electric motors generate hardly any waste heat. The question of climate control in electric vehicles thus needs to be solved anew.

In the context of the BMBF collaborative project Visio.M, scientists of the TU München researched how to create a subjectively pleasant climate for passengers in the most energy efficient manner.

The researchers present the results of their work, implemented in the Visio.M prototype, from 13th to 17th April 2015 in the German government stand (Hall 27, Stand G 64) at the Hannover Messe.

Most previous electric vehicles simply took over concepts from combustion engine vehicles. However, these concept's thirst for energy put a noticeable dent in vehicle range. The researchers thus took a new look at all potential solutions, considering their efficiency, comfort and cost.

Air conditioning in direct proximity to the passenger

In their research they quickly determined that cooling in direct proximity to the body provided the most efficient alternative. In contrast to previously deployed solutions, in which the entire interior is cooled or heated to the same temperature, heat is generated or dissipated only where it can actually be felt by the passengers.

"Our trials showed that uniform climate control is not necessary," says Marius Janta, staff member of the Chair for Ergonomics at the TU München. "When we heat the seat of a passenger on cold days, passengers find it pleasant. With only a small amount of energy we can significantly reduce the sense of discomfort."

The temperature control of the seats in the Visio.M is accomplished using Peltier elements. These are semiconductor elements that can be used for both heating and cooling. "Even though Peltier elements are relatively expensive, they warm up or cool down immediately," says Alexander Präbst, a staff member at the Chair of Thermodynamics at the TU München. "Compared to the cold start of a combustion engine in winter, they even improve the level of comfort."

Since Peltier elements are light-weight, they are also deployed in the central air conditioning unit. The installed Peltier elements have a performance capacity of up to 1.6 kW. The elements installed in the seats have a peak performance of 150 W per seat. On very cold days, a supplemental bioethanol heater with a rating of 4.5 kW can be switched on without sacrificing range.

Integrated thermal management

The Visio.M achieves maximum efficiency not only through temperature control of the passenger space, but also by integrating the performance electronics into a holistic thermal management system. This allows to use the waste heat the motor and the performance electronics to heat the passenger compartment in the winter while excess capacity of the air conditioning system can be used to cool the performance electronics in the summer.

The thermal management system is controlled by intelligent, self-adaptive software based on an evolutionary algorithm, developed at Technische Universität München. It evaluates the various sensor signals for temperature and humidity and automatically finds the optimal settings with regard to comfort, safety and efficiency using a simplified computer model.

A further comfort improvement can be achieved using a remote control of the air conditioning system via a smart phone. Thus shortly before his arrival, the driver can start heating or cooling. A preliminary air conditioning during charging could be added as well. Thanks to the open software platform of Visio.M adding of extensions is extremely simple and can take place without workshop visit.

The intelligent coupling of all heating and cooling functions for passengers and performance electronics results in a very compact climate control unit. "Here, we demonstrate an approach that can serve as a model for combustion engine models, as well." In a combustion engine vehicle efficient climate control would generate savings, especially with regard to air conditioning. Beyond that, the compact system requires less space, which provides additional freedom for design and safety.

Participants in the Visio.M consortium were, in addition to the automotive companies BMW AG (lead manager) and Daimler AG, the Technische Universitaet Muenchen as a scientific partner, and Autoliv BV & Co. KG, the Federal Highway Research Institute (BAST), Continental Automotive GmbH, Finepower GmbH, Hyve AG, IAV GmbH, InnoZ GmbH, Intermap Technologies GmbH, LION Smart GmbH, Amtek Tekfor Holding GmbH, Siemens AG, Texas Instruments Germany GmbH and TÜV SÜD AG as industrial partners. The project was funded under the priority program "Key Technologies for Electric Mobility - STROM" of the Federal Ministry for Education and Research (BMBF) for a term of 2.5 years with a total budget of 10.8 million euro.

Media Contact

Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510

 @TU_Muenchen

http://www.tum.de 

Dr. Andreas Battenberg | EurekAlert!

More articles from Information Technology:

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

nachricht EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers
11.03.2019 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>