Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pantograph Monitoring for the eHighway

13.01.2015

Siemens is developing an automatic monitoring system for pantographs.

Designed initially for electric and hybrid trucks on eHighways, the system uses cameras and sensors to check the condition of pantographs in order to prevent damage to the contact wire. Similar but more complex systems are occasionally used for electric trains.

The eHighway system is a low-emission solution that was developed by Siemens for heavily used truck shuttle routes. Electric or hybrid-drive trucks use pantographs to draw electric power from overhead conductors, which allows them to travel with practically no emissions.

On an eHighway, which will be used by vehicles with many different owners, monitoring the pantographs is especially important to prevent route closures that may become necessary because of damaged overhead conductors.

The eHighway solution is a compact and inexpensive system that can be installed at various points along the route and simultaneously detects whether the vehicles are authorized. Siemens introduced the solution recently at the Innotrans 2014 trade fair and demonstrated how it can be applied to electric trains.

Whether on a truck or train, the pantographs are subject to wear and tear during operation. The carbon contact strips, in particular, wear out through contact with the overhead wire. If worn-out or recently damaged contact strips are not detected in time, grooves, fractures, or uneven wear could lead to contact problems and thus to damage of the contact wire of the overhead conductor. In extreme cases, the overhead contact wire might even break.

Special cameras monitor the contacts

The system monitors the pantograph in two ways. Cameras monitor the carbon surfaces on the contact strip. Special algorithms evaluate the level of wear or incipient damage. As soon as enough measurement data is available from various systems, the solution will also try to predict when the carbon strips have to be replaced.

Maintenance is thus possible according to the state of wear, and the contact strips will be used for as long as possible. In addition, sensors register the vertical deflection of the overhead contact wire. From this, the pressure on the wire can be inferred. If the pantograph presses on the wire with too much force, there is excessive wear on the carbon layer as well as the overhead contact wire. If the pressure is too low, the contact could be broken, and arcing might occur, which also stresses both sides of the connection.

The system is designed in such a way that it can be installed at the poles of the overhead conductor as well as on bridges in order to take measurements at as many points as possible along the route. This makes it possible to draw additional inferences regarding the condition of the infrastructure - the suspension of the overhead contact wire, for instance. In the case of electric trains, the train stations or depot entrances are appropriate spots for measurements.

The condition of the pantograph is transmitted to the control centers, the maintenance engineers or to an onboard unit in the truck. Siemens is operating the monitoring system at its test facility for eHighways and is currently optimizing the automatic analysis, including the process for evaluating the contact strips, for instance. After that, a functional prototype is planned.

Weitere Informationen:

http://ww.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>