Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Completes First Phase of Titan Supercomputer Transition

02.03.2012
Oak Ridge National Laboratory’s Jaguar supercomputer has completed the first phase of an upgrade that will keep it among the most powerful scientific computing systems in the world.

Acceptance testing for the upgrade was completed earlier this month. The testing suite included leading scientific applications focused on molecular dynamics, high-temperature superconductivity, nuclear fusion, and combustion.

Jaguar, manufactured by Cray Inc., is operated by the Oak Ridge Leadership Computing Facility (OLCF). Even before this month’s upgrade to 3.3 petaflops it was the United States’ most powerful supercomputer, capable of 2,300 trillion calculations each second, or 2.3 petaflops. The same number of calculations would take an individual working at a rate of one per second more than 70 million years.

When the upgrade process is completed this autumn, the system will be renamed Titan and will be capable of 10 to 20 petaflops. Users have had access to Jaguar throughout the upgrade process.

“During our upgrade, we have kept our users on Jaguar every chance we get,” said Jack Wells, director of science at the OLCF, “We have already seen the positive impact on applications, for example in computational fluid dynamics, from the doubled memory.”

The DOE Office of Science-funded project, which was concluded ahead of schedule, upgraded Jaguar’s AMD Opteron cores to the newest 6200 series and increased their number by a third, from 224,256 to 299,008. Two six-core Opteron processors were removed from each of Jaguar’s 18,688 nodes and replaced with a single 16-core processor. At the same time, the system’s interconnect was updated and its memory was doubled to 600 terabytes.

In addition, 960 of Jaguar’s 18,688 compute nodes now contain an NVIDIA graphical processing unit (GPU). The GPUs were added to the system in anticipation of a much larger GPU installation later in the year. The GPUs act as accelerators, giving researchers a serious boost in computing power in a far more energy-efficient system.

"Applications that were squeezing onto our Cray XT5 nodes can now make full use of the 16-core processor. Doubling the memory can have a dramatic impact on application workflow,” Wells said.

“The new Gemini interconnect is much more scalable,” Wells added, “helping applications like molecular dynamics that have demanding network communication requirements.”

GPUs will add a level of parallelism to the system and allow Titan to reach 10 to 20 petaflops within the same space as Jaguar and with essentially the same power requirements. While the Opteron processors have 16 cores and are therefore able to carry out 16 computing tasks simultaneously, the GPUs will be able to tackle hundreds of computing tasks at the same time.

With nearly 1,000 GPUs now available, researchers will have an opportunity to optimize their applications for the accelerated Titan system.

“This is going to be an exciting year in Oak Ridge as our users take advantage of our new XK6 architecture and get ready for the new NVIDIA Kepler GPUs in the fall,” Wells said. “A lot of work by many people is beginning to pay off.”

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Leo Williams | Newswise Science News
Further information:
http://science.energy.gov
http://www.ornl.gov

More articles from Information Technology:

nachricht Spintronics: Faster data processing through ultrashort electric pulses
02.07.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Multi-sensor system for the precise and efficient inspection of roads, railways and similar assets
01.07.2020 | Fraunhofer IPM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>