Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optomechanics: Swift light switching at the microscale

13.09.2012
Faster signal storage and optical processing in nanomachined devices edge closer to realization

A system that has only two possible stable states, such as a light switch, is called bistable by scientists and engineers. Bistability in microscale devices could pave the way to compact optical switching and memory elements.

In the bistable systems found so far, however, switching between states takes too long to make the approach practical. Now, thanks to the recent observation of bistability in an array of micrometer-sized rings, fast microscale optical switches in novel photonic devices are a step closer to development.

Yefeng Yu of the A*STAR Data Storage Institute and his co-workers in Singapore and France observed this bistability in a device consisting of two 60-micrometer-wide silicon rings into which they could feed laser light of wavelengths specific to the particular ring geometry they used1. One segment of each ring hung above a gap, and these free-hanging arcs deformed slightly as light flowed through the ring. The deformation of the rings, in turn, changed their optical properties. As a result of this interplay between optical and mechanical forces, the researchers observed stable behavior at two wavelengths of the light; not at one, as expected. By changing the wavelength of the incoming light, Yu and co-workers could conveniently switch between these two states.

“To our knowledge, this is the first time that optical bistability has been induced by optical forces acting on mechanical motion,” explains Yu. “Similar phenomena are usually produced by thermal effects.” Relying on heating mechanisms, however, means that the typical times required to switch between the two stable states are relatively long, on the order of milliseconds. Using optical effects gave Yu and his co-workers a much faster means to control the switching process. “The switching time in our system is currently at the microsecond level,” says Yu. “But there is some space for reducing this time through design optimization.”

This thousand-fold acceleration should assist practical applications. The two stable states of the system, for example, can be used to encode information in terms of ‘zeros’ and ‘ones’, as it is in digital computers. But instead of using electrons to process information, the two states of Yu and his co-workers’ optomechanical device should allow the representation of information.

“We envisage using our new system to implement optical logic gates for data processing,” Yu says. But there may be many more possible uses for these devices. “Applications we want to explore include tunable lasers, biosensor and optomechanical memories.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Yu, Y. F., Zhang, J. B., Bourouina, T. & Liu A. Q. Optical-force-induced bistability in nanomachined ring resonator systems. Applied Physics Letters 100, 093108 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>