Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronics: Tapering off for efficiency

14.09.2015

A new compact structure enables efficient lasers to be realized on silicon chips

A compact ‘on-silicon-chip’ laser has been developed by researchers at Agency for Science, Technology and Research (A*STAR) in Singapore that boasts both excellent confinement of light for lasing and the ability to efficiently share the laser light with nearby components.


A new design for a compact on-chip laser showing the two tapered ends that allow light to be efficiently coupled with structures on the chip. © 2015 A*STAR Data Storage Institute

Compact lasers small enough to be integrated on chips are in great demand for a diverse range of applications, including data communication and storage. Lasers made from a combination of silicon and semiconductors containing elements from the third and fifth columns in the periodic table (dubbed III–V silicon lasers) are particularly attractive as on-chip light sources.

To be used in applications, such lasers must tightly confine light to maximize the lasing efficiency and should effectively share, or ‘couple’, light with optical waveguides — the optical equivalent of electrical wiring — located under the laser.

Jing Pu and co-workers at the A*STAR Data Storage Institute have demonstrated a III–V silicon laser that meets both criteria. Their structure realizes efficient lasing through the smart control of light — light is tightly confined to the III–V semiconductor layer in which lasing occurs. Furthermore, both laser ends are tapered to facilitate the coupling of light with underlying silicon waveguides.

“Our laser exhibits a high efficiency as well as efficient light coupling between the III–V semiconductor and silicon layers, which is the thinnest reported to date,” says Pu.

The new structure is promising as an on-chip light source for current silicon photonics technology but also as a potential new integration platform. It improves on conventional fabrication procedures, in which components are made separately and then combined, and enables fully integrated optoelectronic systems to be fabricated that take up less space on a chip.

“This new technology could replace the current approach of integrating a laser diode to an optical system through assembling and then bonding of components,” explains Pu. “The laser diodes can be fabricated exactly where they are needed, which will cut the manufacturing cost and reduce the size and weight of light sources by a factor of hundreds.”

These advantages are very attractive for many applications, including next-generation high-density magnetic data storage, where laser diodes need to be integrated on writing heads that are smaller than 0.1 square millimeters.

The team plans to improve the manufacturing process and device performance so that the technology can advance from prototype to manufacture for industrial applications. “We also aim to reduce the laser size and power consumption for use as vital components for high-performance computing,” Pu adds.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute. More information about the group’s research can be found at the Nanotechnology Integration Group webpage.

Reference

Pu, J., Lim, K. P., Ng, D. K. T., Krishnamurthy, V., Lee, C. W., Tang, K. et al. Heterogeneously integrated III-V laser on thin SOI with compact optical vertical interconnect access. Optics Letters 40, 1378–1381 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | ResearchSea
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>