Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optical fiber transmits one terabit per second – Novel modulation approach

16.09.2016

Nokia Bell Labs, Deutsche Telekom T-Labs and the Technical University of Munich (TUM) have achieved unprecedented transmission capacity and spectral efficiency in an optical communications field trial with a new modulation technique. The breakthrough research could extend the capability of optical networks to meet surging data traffic demands.

The demonstration shows that the flexibility and performance of optical networks can be maximized when adjustable transmission rates are dynamically adapted to channel conditions and traffic demands. As part of the Safe and Secure European Routing (SASER) project, the experiment over a deployed optical fiber network of Deutsche Telekom achieved a net 1 Terabit transmission rate.


Prof. Dr. Gerhard Kramer

Astrid Eckert / TUM

This is close to the the theoretical maximum information transfer rate of that channel and thus approaching the Shannon Limit of the fiber link. The Shannon Limit was discovered in 1948 by Claude Shannon, Bell Labs pioneer and the “father of information theory.”

Novel modulation approach

The trial of the novel modulation approach, known as Probabilistic Constellation Shaping (PCS), uses quadrature amplitude modulation (QAM) formats to achieve higher transmission capacity over a given channel to significantly improve the spectral efficiency of optical communications.

PCS modifies the probability with which constellation points – the alphabet of the transmission – are used. Traditionally, all constellation points are used with the same frequency. PCS cleverly uses constellation points with high amplitude less frequently than those with lesser amplitude to transmit signals that, on average, are more resilient to noise and other impairments. This allows the transmission rate to be tailored to ideally fit the transmission channel, delivering up to 30 percent greater reach.

Maximal transmission capacity

It was 50 years ago when optical fiber was introduced. With the promise of 5G wireless technology on the horizon, optical transport systems today continue to evolve to help telecommunications operators and enterprises meet network data traffic growing at a cumulative annual rate of up to 100 percent.

PCS is now part of this evolution by enabling increases in optical fiber flexibility and performance that can move data traffic faster and over greater distances without increasing the optical network complexity.

The research is a key milestone in proving PCS could be used in the future to extend optical communication technologies. The results of this joint experiment will be presented at the European Conference on Optical Communication (ECOC) 2016 in Düsseldorf, Germany on September 19.

Transmitting data faster, further, and with unparalleled flexibility

“Increased capacities, reach and flexibility over deployed fiber infrastructures,” said Bruno Jacobfeuerborn, Director Technology Telekom Deutschland and CTO Deutsche Telekom. “Deutsche Telekom provides a unique network infrastructure to evaluate and demonstrate such highly innovative transmission technologies for example. Furthermore, it also supports higher layer test scenarios and technologies.”

“Information theory is the mathematics of digital technology, and during the Claude E. Shannon centenary year 2016 it is thrilling to see his ideas continue to transform industries and society,” said Professor Gerhard Kramer, Head of the Institute for
Communications Engineering at Technical University of Munich.

“Probabilistic constellation shaping, an idea that won a Bell Labs Prize, directly applies Shannon’s principles and lets fiber optic systems transmit data faster, further, and with unparalleled flexibility,” added Prof. Kramer. “The success of the close collaboration with Nokia Bell Labs, who further developed the technology, and Deutsche Telekom T-Labs, who tested it under real conditions, is satisfying confirmation that TUM Engineering is a label of outstanding quality, and that TUM teaching gives our students the intellectual tools to compete, succeed and lead globally.”

Marcus Weldon, president Nokia Bell Labs & Nokia CTO, said: “Future optical networks not only need to support orders of magnitude higher capacity, but also the ability to dynamically adapt to channel conditions and traffic demand. Probabilistic Constellation Shaping offers great benefits to service providers and enterprises by enabling optical networks to operate closer to the Shannon Limit to support massive datacenter interconnectivity and provide the flexibility and performance required for modern networking in the digital era.”

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33398/ Press release
https://www.tum.de/en/about-tum/news/press-releases/short/article/32802/ Press release Bell Labs Prize
http://www.lnt.ei.tum.de/en/home/ Homepage Institute for Communications Engineering

Dr. Ulrich Marsch | Technische Universität München

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>