Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Online Social Networks May Know about Non-members

02.05.2012
Heidelberg researchers study automatic generation of so-called shadow profiles

What can social networks on the internet know about persons who are friends of members, but have no user profile of their own? Researchers from the Interdisciplinary Center for Scientific Computing of Heidelberg University studied this question.


Any social network platform divides society into members and non-members. Relationships between non-members whose e-mail contact has been revealed by a member (red lines) can be accurately inferred based on relationships between members (black lines) and their connection patterns to non-members (green lines).
Picture: Ágnes Horvát

Their work shows that through network analytical and machine learning tools the relationships between members and the connection patterns to non-members can be evaluated with regards to non-member relationships. Using simple contact data, it is possible, under certain conditions, to correctly predict that two non-members know each other with approx. 40 percent probability.

For several years scientists have been investigating what conclusions can be drawn from a computational analysis of input data by applying adequate learning and prediction algorithms. In a social network, information not disclosed by a member, such as sexual orientation or political preferences, can be “calculated” with a very high degree of accuracy if enough of his or her friends did provide such information about themselves. “Once confirmed friendships are known, predicting certain unknown properties is no longer that much of a challenge for machine learning”, says Prof. Dr. Fred Hamprecht, co-founder of the Heidelberg Collaboratory for Image Processing (HCI).

Until now, studies of this type were restricted to users of social networks, i.e. persons with a posted user profile who agreed to the given privacy terms. “Non-members, however, have no such agreement. We therefore studied their vulnerability to the automatic generation of so-called shadow profiles”, explains Prof. Dr. Katharina Zweig, who until recently worked at the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University.

In an online social network, it is possible to infer information about non-members, for instance by using so-called friend-finder applications. When new Facebook members register, they are asked to make available their full list of e-mail contacts, even of those people who are not Facebook members. “This very basic knowledge of who is acquainted with whom in the social network can be tied to information about who users know outside the network. In turn, this association can be used to deduce a substantial portion of relationships between non-members”, explains Ágnes Horvát, who conducts research at the IWR.

To make their calculations, the Heidelberg researchers used a standard procedure of machine learning based on network analytical structural properties. As the data needed for the study was not freely obtainable, the researchers worked with anonymised real-world Facebook friendship networks as a test set of basic data. The partitioning between members and non-members was simulated using a broad possible range of models. These partitions were used to validate the study results. Using standard computers the researchers were able to calculate in just a few days which non-members were most likely friends of each other.

The Heidelberg scientists were astonished that all the simulation methods produced the same qualitative result. “Based on realistic assumptions about the percentage of a population that are members of a social network and the probability with which they will upload their e-mail address books, the calculations enabled us to accurately predict 40 percent of the relationships between non-members.” According to Dr. Michael Hanselmann of the HCI, this represents a 20-fold improvement compared to simple guessing.

“Our investigation made clear the potential social networks have for inferring information about non-members. The results are also astonishing because they are based on mere contact data”, emphasises Prof. Hamprecht. Many social network platforms, however, have far more data about users, such as age, income, education, or where they live. Using this data, a corresponding technical infrastructure and other structural properties of network analysis, the researchers believe that the prediction accuracy could be significantly improved. “Overall our project illustrates that we as a society have to come to an understanding about the extent to which relational data about persons who did not provide their consent may be used”, says Prof. Zweig.

The results of the research were published in “PLoS ONE”.

Original publication:
Horvát E-Á, Hanselmann M, Hamprecht FA, Zweig KA (2012): One Plus One Makes Three (for Social Networks). PLoS ONE 7(4): e34740. doi:10.1371/journal.pone.0034740

Contact:
Prof. Dr. Fred Hamprecht
Heidelberg University
Interdisciplinary Center for Scientific Computing
Phone: +49 6221 54-8800
fred.hamprecht@iwr.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>