Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Online Social Networks May Know about Non-members

02.05.2012
Heidelberg researchers study automatic generation of so-called shadow profiles

What can social networks on the internet know about persons who are friends of members, but have no user profile of their own? Researchers from the Interdisciplinary Center for Scientific Computing of Heidelberg University studied this question.


Any social network platform divides society into members and non-members. Relationships between non-members whose e-mail contact has been revealed by a member (red lines) can be accurately inferred based on relationships between members (black lines) and their connection patterns to non-members (green lines).
Picture: Ágnes Horvát

Their work shows that through network analytical and machine learning tools the relationships between members and the connection patterns to non-members can be evaluated with regards to non-member relationships. Using simple contact data, it is possible, under certain conditions, to correctly predict that two non-members know each other with approx. 40 percent probability.

For several years scientists have been investigating what conclusions can be drawn from a computational analysis of input data by applying adequate learning and prediction algorithms. In a social network, information not disclosed by a member, such as sexual orientation or political preferences, can be “calculated” with a very high degree of accuracy if enough of his or her friends did provide such information about themselves. “Once confirmed friendships are known, predicting certain unknown properties is no longer that much of a challenge for machine learning”, says Prof. Dr. Fred Hamprecht, co-founder of the Heidelberg Collaboratory for Image Processing (HCI).

Until now, studies of this type were restricted to users of social networks, i.e. persons with a posted user profile who agreed to the given privacy terms. “Non-members, however, have no such agreement. We therefore studied their vulnerability to the automatic generation of so-called shadow profiles”, explains Prof. Dr. Katharina Zweig, who until recently worked at the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University.

In an online social network, it is possible to infer information about non-members, for instance by using so-called friend-finder applications. When new Facebook members register, they are asked to make available their full list of e-mail contacts, even of those people who are not Facebook members. “This very basic knowledge of who is acquainted with whom in the social network can be tied to information about who users know outside the network. In turn, this association can be used to deduce a substantial portion of relationships between non-members”, explains Ágnes Horvát, who conducts research at the IWR.

To make their calculations, the Heidelberg researchers used a standard procedure of machine learning based on network analytical structural properties. As the data needed for the study was not freely obtainable, the researchers worked with anonymised real-world Facebook friendship networks as a test set of basic data. The partitioning between members and non-members was simulated using a broad possible range of models. These partitions were used to validate the study results. Using standard computers the researchers were able to calculate in just a few days which non-members were most likely friends of each other.

The Heidelberg scientists were astonished that all the simulation methods produced the same qualitative result. “Based on realistic assumptions about the percentage of a population that are members of a social network and the probability with which they will upload their e-mail address books, the calculations enabled us to accurately predict 40 percent of the relationships between non-members.” According to Dr. Michael Hanselmann of the HCI, this represents a 20-fold improvement compared to simple guessing.

“Our investigation made clear the potential social networks have for inferring information about non-members. The results are also astonishing because they are based on mere contact data”, emphasises Prof. Hamprecht. Many social network platforms, however, have far more data about users, such as age, income, education, or where they live. Using this data, a corresponding technical infrastructure and other structural properties of network analysis, the researchers believe that the prediction accuracy could be significantly improved. “Overall our project illustrates that we as a society have to come to an understanding about the extent to which relational data about persons who did not provide their consent may be used”, says Prof. Zweig.

The results of the research were published in “PLoS ONE”.

Original publication:
Horvát E-Á, Hanselmann M, Hamprecht FA, Zweig KA (2012): One Plus One Makes Three (for Social Networks). PLoS ONE 7(4): e34740. doi:10.1371/journal.pone.0034740

Contact:
Prof. Dr. Fred Hamprecht
Heidelberg University
Interdisciplinary Center for Scientific Computing
Phone: +49 6221 54-8800
fred.hamprecht@iwr.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>