Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NTU and I²R scientists invent revolutionary chipset for high-speed wireless data transfer

25.05.2012
Data can now be transmitted 1,000 times faster than Bluetooth
Here is a new microchip that can transfer data the size of 80 MP3 song files (or 250 megabytes) wirelessly between mobile devices, in the flick of a second.

Or how about transferring a typical 2-hour, 8-gigabyte DVD movie in just half a minute compared to 8.5 hours on Bluetooth?
Such unprecedented speeds on the wireless platform are now a reality as scientists from the Nanyang Technological University (NTU) and A*STAR’s Institute for Infocomm Research (I²R) have developed a revolutionary microchip that can transmit large volumes of data at ultra-high speeds of 2 Gigabits per second (or 1,000 times faster than Bluetooth^).

The chipset employs wireless millimetre-wave (mm-wave) technology to transmit large packets of information while consuming little power. This enables low-power applications, like smart phones and tablets, to transmit/receive data between platforms, like projectors and TVs, without the need for cables for the very first time.
“The demand for ultra high-speed wireless connectivity has fuelled the need for faster data transfer rates. Unfortunately, current technologies are unable to meet these stringent demands. The NTU-I2R team, being at the cutting edge of research and development, has successfully demonstrated an integrated 60GHz chipset for multi-gigabits per second wireless transmission,” said Professor Yeo Kiat Seng, the Principal Investigator of the project and Associate Chair of Research at NTU’s School of Electrical & Electronic Engineering.

How the VIRTUS chipset works

Named the VIRTUS chipset, it consists of three components: an antenna, a full radio-frequency transceiver (developed by NTU) and a baseband processor (developed by I²R). The antenna is connected to the transceiver, which filters and amplifies the signals. It then passes the signals to the baseband processor, which comprises non-linear analog signal processing and unique digital parallel processing and decoder architecture – key to lower power consumption.

The team of scientists from NTU and I²R is the first in the world to successfully put together an integrated low-power 60 Gigahertz (GHz) chipset solution consisting of the three components, making it one step closer to commercialisation. It is also the first team to demonstrate one of the technology’s applications – in the form of a high-definition wireless video stream.

The VIRTUS chipset has garnered 16 international patents. It has also been featured in 51 top-tier international journal and conference papers, on top of its other international accolades such as two best paper awards and two best chip design awards.
“This ground-breaking mm-wave integrated circuit (IC) technology will have significant commercial impact, enabling a wide range of new applications such as wireless display, mobile-distributed computing, live high-definition video streaming, real-time interactive multi-user gaming, and more,” added NTU’s Prof Yeo, who is also founding director of NTU’s VIRTUS IC Design Centre of Excellence.

The collaboration, which began in December 2009, was funded by A*STAR’s technology transfer arm, Exploit Technologies Pte Ltd. The team has been approached by leading players and global brand names in the electronics and semiconductor industry to develop the chipset commercially. It will also showcase the technology at a leading technical innovation event in June this year – Computex (Taiwan).

^ Compared to today’s standard Bluetooth technology (v2.0 +EDR’s maximum application throughput of 2.1Mbps)

Media contact:
Evelyn Choo
Assistant Manager (Media Relations)
Corporate Communications Office
Nanyang Technological University
Tel: (65) 6790 4714
Email: evelynchoo@ntu.edu.sg
About Nanyang Technological University

A research-intensive public university, Nanyang Technological University (NTU) has 33,500 undergraduate and postgraduate students in the colleges of Engineering, Business, Science, and Humanities, Arts, & Social Sciences. In 2013, NTU will enrol the first batch of students at its new medical school, the Lee Kong Chian School of Medicine, which is set up jointly with Imperial College London.

NTU is also home to four world-class autonomous institutes – the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre on Environmental Life Sciences Engineering – and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

A fast-growing university with an international outlook, NTU is putting its global stamp on Five Peaks of Excellence: Sustainable Earth, Future Healthcare, New Media, New Silk Road, and Innovation Asia.

Besides the main Yunnan Garden campus, NTU also has a satellite campus in Singapore’s science and tech hub, one-north, and is setting up a third campus in Novena, Singapore’s medical district.

Evelyn Choo | EurekAlert!
Further information:
http://www.ntu.edu.sg

Further reports about: Bluetooth Earth's magnetic field I²R NTU Nanyang VIRTUS smart phone

More articles from Information Technology:

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>