Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NTU and I²R scientists invent revolutionary chipset for high-speed wireless data transfer

25.05.2012
Data can now be transmitted 1,000 times faster than Bluetooth
Here is a new microchip that can transfer data the size of 80 MP3 song files (or 250 megabytes) wirelessly between mobile devices, in the flick of a second.

Or how about transferring a typical 2-hour, 8-gigabyte DVD movie in just half a minute compared to 8.5 hours on Bluetooth?
Such unprecedented speeds on the wireless platform are now a reality as scientists from the Nanyang Technological University (NTU) and A*STAR’s Institute for Infocomm Research (I²R) have developed a revolutionary microchip that can transmit large volumes of data at ultra-high speeds of 2 Gigabits per second (or 1,000 times faster than Bluetooth^).

The chipset employs wireless millimetre-wave (mm-wave) technology to transmit large packets of information while consuming little power. This enables low-power applications, like smart phones and tablets, to transmit/receive data between platforms, like projectors and TVs, without the need for cables for the very first time.
“The demand for ultra high-speed wireless connectivity has fuelled the need for faster data transfer rates. Unfortunately, current technologies are unable to meet these stringent demands. The NTU-I2R team, being at the cutting edge of research and development, has successfully demonstrated an integrated 60GHz chipset for multi-gigabits per second wireless transmission,” said Professor Yeo Kiat Seng, the Principal Investigator of the project and Associate Chair of Research at NTU’s School of Electrical & Electronic Engineering.

How the VIRTUS chipset works

Named the VIRTUS chipset, it consists of three components: an antenna, a full radio-frequency transceiver (developed by NTU) and a baseband processor (developed by I²R). The antenna is connected to the transceiver, which filters and amplifies the signals. It then passes the signals to the baseband processor, which comprises non-linear analog signal processing and unique digital parallel processing and decoder architecture – key to lower power consumption.

The team of scientists from NTU and I²R is the first in the world to successfully put together an integrated low-power 60 Gigahertz (GHz) chipset solution consisting of the three components, making it one step closer to commercialisation. It is also the first team to demonstrate one of the technology’s applications – in the form of a high-definition wireless video stream.

The VIRTUS chipset has garnered 16 international patents. It has also been featured in 51 top-tier international journal and conference papers, on top of its other international accolades such as two best paper awards and two best chip design awards.
“This ground-breaking mm-wave integrated circuit (IC) technology will have significant commercial impact, enabling a wide range of new applications such as wireless display, mobile-distributed computing, live high-definition video streaming, real-time interactive multi-user gaming, and more,” added NTU’s Prof Yeo, who is also founding director of NTU’s VIRTUS IC Design Centre of Excellence.

The collaboration, which began in December 2009, was funded by A*STAR’s technology transfer arm, Exploit Technologies Pte Ltd. The team has been approached by leading players and global brand names in the electronics and semiconductor industry to develop the chipset commercially. It will also showcase the technology at a leading technical innovation event in June this year – Computex (Taiwan).

^ Compared to today’s standard Bluetooth technology (v2.0 +EDR’s maximum application throughput of 2.1Mbps)

Media contact:
Evelyn Choo
Assistant Manager (Media Relations)
Corporate Communications Office
Nanyang Technological University
Tel: (65) 6790 4714
Email: evelynchoo@ntu.edu.sg
About Nanyang Technological University

A research-intensive public university, Nanyang Technological University (NTU) has 33,500 undergraduate and postgraduate students in the colleges of Engineering, Business, Science, and Humanities, Arts, & Social Sciences. In 2013, NTU will enrol the first batch of students at its new medical school, the Lee Kong Chian School of Medicine, which is set up jointly with Imperial College London.

NTU is also home to four world-class autonomous institutes – the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre on Environmental Life Sciences Engineering – and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

A fast-growing university with an international outlook, NTU is putting its global stamp on Five Peaks of Excellence: Sustainable Earth, Future Healthcare, New Media, New Silk Road, and Innovation Asia.

Besides the main Yunnan Garden campus, NTU also has a satellite campus in Singapore’s science and tech hub, one-north, and is setting up a third campus in Novena, Singapore’s medical district.

Evelyn Choo | EurekAlert!
Further information:
http://www.ntu.edu.sg

Further reports about: Bluetooth Earth's magnetic field I²R NTU Nanyang VIRTUS smart phone

More articles from Information Technology:

nachricht New system by TU Graz automatically recognises pedestrians’ intent to cross the road
27.05.2019 | Technische Universität Graz

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>