Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019

SEARCHLIGHT project radically rethinks wireless architectures for highly scalable ultra-dense millimeter-wave networks

The radio frequency spectrum, the basis for wireless telecommunications, is a finite resource that needs to be managed effectively to satisfy the demands posed by the exponential growth in wireless internet access.


Figure 1. (first above) Photo of the open space measurement setup of Fig. 2, showing the client, AP2 (access point 2) and AP5 (access point 5).

Credit: IMDEA Networks

IMDEA Networks researchers have developed a novel communications architecture for future ultrafast wireless networks that promises to achieve data rates previously only possible with optical fiber.

The radio frequency spectrum, the basis for wireless telecommunications, is a finite resource that needs to be managed effectively to satisfy the demands posed by the exponential growth in wireless internet access.

IMDEA Networks researchers have developed a novel communications architecture for future ultrafast wireless networks that promises to achieve data rates previously only possible with optical fiber.

Facebook initiated the Terragraph project that uses a mesh of reconfigurable millimeter-wave links to provide reliable, high-speed Internet access in urban and suburban environments. It previously experimented with networks of solar-powered drones with millimeter-wave backhaul and interconnection links to provide connectivity in areas with little infrastructure.

The Loon project by Alphabet (Google) uses high-altitude balloons with millimeter-wave links for the same purpose. Millimeter-wave technology also has extremely interesting properties for large scale networks of small satellites to provide world-wide connectivity, such as the planned Starlink network of SpaceX and PointView Tech (Facebook), and is very likely to be used in such networks. As density and capacity of such types of networks increases, the scalability results of this ERC project will be of high practical relevance.

"The ground breaking protocols and algorithms we have developed provide key elements for the scalability of future wireless networks," says Joerg Widmer. "In analogy to the evolution of wired Ethernet from a shared medium to a fully switched network, we envision that future wireless networks will consist of many highly directional LOS (line-of-sight) channels for communication between access points (APs) and end devices".

Thus, the architecture of future millimeter-wave networks will be characterized by being ultra-dense and highly scalable. "In order to deal with the extremely dynamic radio environments where channels may appear and disappear over very short time intervals, SEARCHLIGHT uses angle information to rapidly align the directional millimeter-wave antennas," explains Dr. Widmer.

"The architecture integrates a location system and learns a map of the radio environment, which allows to rapidly select the most suitable access point and antenna beam pattern and allocate radio resource using predicted location as context information. Access points are deployed ubiquitously to provide continuous connectivity even in face of mobility and blockage and the project developed very low overhead network management mechanisms to cope with the high device density."

Dr. Widmer, has recently awarded a H2020 Marie Sklodowska-Curie Innovative Training Network grant on "Millimeter-wave Networking and Sensing for Beyond 5G", and within this project his group will follow-up on the promising work that was started during the ERC grant.

The work of the prestigious ERC grant also led to a collaboration project funded by Huawei on millimeter-wave and low frequency channel correlation and a sub-contracted project on a "Millimeter-wave SDR-based Open Experimentation Platform" within the framework of the H2020 project "Orchestration and Reconfiguration Control Architecture" (ORCA), to extend a FPGA based platform to less powerful hardware and enable remote access and experimentation for teaching and research.

###

More info:

* SEARCHLIGHT: https://www.networks.imdea.org/research/projects/searchlight

* Personal site of Dr. Joerg Widmer: http://people.networks.imdea.org/~joerg_widmer/

* Wireless Networking Group at IMDEA Networks: http://wireless.networks.imdea.org/

* Facebook's Terragraph project: https://terragraph.com/

* SpaceX's Starlink network: https://www.spacex.com/webcast

* Alphabet's (Google) Loon Project: https://loon.com/

* Facebook's PointView Tech: https://spectrum.ieee.org/tech-talk/aerospace/satellites/facebooks-secret-space-lasers

Rebeca De Miguel | EurekAlert!
Further information:
http://www.networks.imdea.org/whats-new/news/2019/novel-communications-architecture-future-ultra-high-speed-peed-wireless-networks
http://dx.doi.org/10.1109/TWC.2019.2899313

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>