Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No more traffic blues for information transfer: decongesting wireless channels


A machine-learning algorithm can help select the best channel for communication over a wireless network of resource-constrained devices

The wireless Internet of Things (IoT) is a network of devices in which each device can directly send information to another over wireless channels of communication, without human intervention. With the number of IoT devices increasing every day, the amount of information on the wireless channels is also increasing.

Researchers from the Tokyo University of Science and Keio University propose that a certain machine learning algorithm can help resource-constrained devices on a wireless network select optimal channels for information transmission; this could potentially decongest massive IoT networks.

Credit: Tokyo University of Science

This is causing congestion over the network, leading to loss of information due to interference and the failure of information delivery. Research to solve this problem of congestion is ongoing, and the most widely accepted and applied solution is the "multi-channel" technology. In this technology, information transmission is distributed among various parallel channels based on the traffic in a particular channel at a given time.

But, at present, optimal information transmission channels are selected using algorithms that cannot be supported by most existing IoT devices because these are resource-constrained; i.e., they have low storage capacity and low processing power, and must be power-saving while remaining in operation for long periods of time.

In a recent study published in Applied Sciences, a group of scientists from the Tokyo University of Science and Keio University, Japan, propose the use of a machine-learning algorithm, based on the tug-of-war model (which is a fundamental model, earlier proposed by Professor Song-Ju Kim from Keio University, that is used to solve such problems as that of how to distribute information across channels), to select channels. "We realized that this algorithm could be applied to IoT devices, and we decided to implement it and experiment with it," Professor Mikio Hasegawa, the lead scientist from the Tokyo University of Science, says.

In their study, they built a system in which several IoT devices were connected to form a network and each device could only select one of several available channels through which to transmit information each time. Moreover, each device was resource-constrained.

In the experiment, the devices were tasked with waking up, transmitting one piece of information, going to sleep, and then repeating the cycle a certain number of times. The role of the proposed algorithm was to enable the devices to select the optimal channel each time, such that at the end of it all, the highest possible number of successful transmissions (i.e., when all the information reaches its destination in one piece) has taken place.

The algorithm is called reinforcement-learning and it goes about the task as follows: every time a piece of information is transmitted through a channel, it notes the probability of achieving successful transmissions via that channel, based on whether the information completely and accurately reaches its destination. It updates this data with every subsequent transmission.

The researchers used this setup to also check a) whether the algorithm was successful, b) whether it was unbiased in its selection of channels, and c) whether it could adapt to traffic variations in a channel. For the tests, an additional control system was constructed in which each device was assigned a particular channel and it could not select any other channel when transmitting information.

In the first case, some channels were congested before beginning the experiment, and the scientists found that the number of successful transmissions was larger when the algorithm was used, as opposed to when it was not.

In the second case, some channels became congested when the algorithm was not used, and information could not be transmitted through them after a point of time, causing "unfairness" in channel selection.

However, when the scientists used the algorithm, the channel selection was found to be fair. The findings for the third case clarify those for the previous two cases: when the algorithm was used, devices automatically began to ignore a congested channel and re-used it only when the traffic in it decreased.

"We achieved channel selection with a small amount of computation and a high-performance machine-learning algorithm," Prof Hasegawa tells us. While this means that the algorithm successfully solved the channel selection problem under experimental conditions, its faring in the real world remains to be seen.

"Field experiments to test the robustness of this algorithm will be conducted in further research," the scientists say. They also plan to improve the algorithm in future research by taking into consideration other network characteristics, such as channel transmission quality.

The world is swiftly moving towards massive wireless IoT networks with an increasing number of devices connecting over wireless channels globally. Every possible organization or scholar is taking the opportunity of this moment in the history of time to solve the channel selection problem and get ahead of the game. Prof Hasegawa and his team have managed to take one of the first steps in the race. The future of high-speed, error-free wireless information transmission may be near!


About the Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan's development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of "Creating science and technology for the harmonious development of nature, human beings, and society", TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today's most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.


About Professor Mikio Hasegawa from Tokyo University of Science

Dr Mikio Hasegawa is currently a Professor at the Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Japan. This paper is the latest in a vast body of research presentations, about 130 publications, and in it he serves as the lead author. His research began in 1994 and has spanned fields ranging from Chaos theory to mobile internet and mathematical engineering considering complex systems theories. He has won several awards for his research, including a best paper award in February 2019.

Tsutomu Shimizu | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

Science & Research
Overview of more VideoLinks >>>