Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018

Researchers at the National Institute of Standards and Technology (NIST) have developed a method for evaluating and selecting optimal antenna designs for future fifth-generation (5G) cellphones, other wireless devices and base stations.

The new NIST method could boost 5G wireless network capacity and reduce costs.


NIST researcher Jelena Senic drives a robot used to measure the performance of different antenna beam patterns. The mobile platform enables researchers to position a wireless channel sounder that includes (top to bottom) an array of 16 receive antennas, the receiver, timing circuitry, a signal digitizer and a battery for untethered field operations.

Credit: NIST

5G systems will avoid crowded conventional wireless channels by using higher, millimeter-wave frequency bands. Transmissions at these frequencies lose a lot of energy along the way, which weakens received signal strength.

One solution is "smart" antennas that can form unusually narrow beams--the area in space where signals are transmitted or received--and rapidly steer them in different directions.

Antenna beamwidth affects wireless system design and performance. NIST's new measurement-based method allows system designers and engineers to evaluate the most appropriate antenna beamwidths for real environments.

"Our new method could reduce costs by enabling greater success with initial network design, eliminating much of the trial and error that is now required," NIST engineer Kate Remley said.

"The method also would foster the use of new base stations that transmit to several users either simultaneously or in rapid succession without one antenna beam interfering with another. This, in turn, would increase network capacity and reduce costs with higher reliability."

This is the first detailed measurement-based study of how antenna beamwidth and orientation interact with the environment to affect millimeter-wave signal transmission. In the technique, NIST measurements covering a broad range of antenna beam angles are converted into an omnidirectional antenna pattern covering all angles equally.

The omnidirectional pattern can then be segmented into narrower and narrower beamwidths. Users can evaluate and model how antenna beam characteristics are expected to perform in specific types of wireless channels.

An engineer could use the method to select an antenna that best suits a specific application. For example, the engineer may choose a beamwidth that is narrow enough to avoid reflections off certain surfaces or that allows multiple antennas to coexist in a given environment without interference.

To develop the new method, the NIST team collected experimental data in a hallway and lobby of a NIST research building, using a special robot loaded with a customized channel sounder and other equipment.

A channel sounder collects data that capture the signal reflections, diffractions and scattering that occur between a transmitter and receiver. Many such measurements can be used to create a statistical representation of the radio channel, to support reliable system design and standardization.

NIST study results confirm that narrow beams can significantly reduce signal interference and delays, and that an optimized beam orientation reduces energy loss during transmissions. For example, the time interval during which signal reflections arrive (a metric called RMS delay spread) dropped dramatically from 15 nanoseconds (ns) to about 1.4 ns as antenna beamwidth was reduced from omnidirectional (360 degrees) to a narrow 3 degrees or so-called pencil beam.

Future research will include extending the method to different environments and analysis of other wireless channel characteristics.

###

Paper: R. Sun, C.A. Gentile, J. Senic, P. Vouras, P.B. Papazian, N.T. Golmie and K.A. Remley. 2018. Millimeter-Wave Propagation Channels vs. Synthetic Beamwidth. IEEE Communications Magazine. December 2018. Published online December 7, 2018. DOI: 10.1109/MCOM.2018.1800177

Laura Ost | EurekAlert!
Further information:
http://dx.doi.org/10.1109/MCOM.2018.1800177

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>